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ABSTRACT 
 

DETERMINATION OF GENETIC VARIATION IN OPIOID-RESISTANT 

HOSPICE PATIENTS USING A PHARMACOGENOMICS APPROACH 

 
Daniel Bianculli 

 
Managing pain requires a delicate balance between the advantages of opioid 

analgesia and the possible adverse effects. This balance becomes even more 

difficult in hospice and palliative care environments where dosage regimens are 

frequently ambiguous. Some hospice patients experience opioid resistance, in which 

opioids no longer produce an analgesic effect on a patient. 

Evidence-based analyses frequently omit this vulnerable population, resulting 

in a need for concrete procedures. The emergence of pharmacogenomic analysis 

and personalized treatment presents a solution to this problem by using each 

patient's genomic data to interpret opiate dosing. 

This pharmacogenomic study aimed to single nucleotide polymorphisms 

(SNPs) influencing opioid response in 18 hospice patients aged 37-84 years (mean 

63 years, 72% male). Participants had diagnoses including COPD, cancer, and HIV. 

Buccal swabs provided DNA for 50-gene panel genotyping. Medical records 

supplied demographic information, medication lists, chronic health conditions, 

morphine doses, pain scores, and palliative performance status data. Linear 

regression analysis identified single nucleotide polymorphisms (SNPs) significantly 

impacting outcomes. 

According to genomic analysis, individuals with the non-TT genotype of the 



CNR1 gene were found to require, on average, a dose of morphine that was 102.3 

mg lower than the dose required by individuals with the TT genotype of the same 

gene (p=0.031). The SLCO1B1 genotype and intermediate activity phenotype 

reduced average pain (p=0.046). The COMT non-MET homozygous phenotype 

increased maximum pain versus MET homozygotes (p=0.041). The CYP2B6 

genotype and G516T heterozygous/A785G homozygous phenotype decreased 

maximum pain (p=0.050). The CYP4F2 poor metabolizer phenotype increased 

palliative performance versus other CYP phenotypes (p=0.028). 

These findings show that genetic variants can modulate opioid metabolism and 

pain response in hospice patients. This study marks an essential step towards the 

goal of personalized medicine in pain management at the end of life, suggesting 

that genotype- guided opioid dosing regimens could potentially lead to improved 

pain management. 

However, the sample size of 18 of this pioneering pharmacogenomic study 

in hospice patients underscores the need for larger-scale studies to validate the 

predictive utility of our findings. 
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CHAPTER 1. INTRODUCTION 
 
1.1 Hospice and Palliative Care 
 

As the population ages, the need for hospice and palliative care increases. The goal is 

to improve the quality of life for patients facing serious, chronic illnesses. Although often 

used interchangeably, there is a distinction between hospice and palliative care. In 

hospice care, the medical staff optimizes the quality of life and treatment is not 

conducted. In palliative care, treatment is continued along with quality-of-life 

improvements1. 

On the other hand, there are various scenarios where patients are placed under 

palliative care: a life-limiting illness though the patient is not terminally ill, a life- 

threatening illness with potential for recovery, or a chronic condition where a patient is 

being treated but will eventually die2. Examples of these illnesses include congestive 

heart failure (CHF) and chronic obstructive pulmonary disease (COPD). 

Investigation into these populations is generally lacking, with most research focused 

on caregiving, access to care, and social issues. Clinical research was a significant gap in 

this patient population3. Palliative and hospice patients are also rarely involved in clinical 

trials. This is because of the many conditions they face, the large number of medications 

taken, and the likelihood of dropping out of the study due to deterioration in their health 

and age-related changes to drug activity4. These combinations of factors contribute to the 

stigma that hospice and palliative care research is too difficult to conduct in an evidence-

based manner. Most research instead focuses on aspects such as health professionals in 

the field, access to hospice care and sociological aspects5 of end-of-life care (ex: Hispanic 

access to hospice care). 
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There is a crucial need to conduct more research on hospice and palliative care 

populations, as evidenced by the funding from the National Institutes of Health (NIH). In 

2015, the NIH budget allocated only 0.2% for end-of-life care, with hospice research and 

palliative care sharing the same budget6. In the latest review of NIH funding for palliative 

care, the budget has only shown an increase in dementia and Alzheimer’s studies at the 

federal level. This increase in funding does not represent growth in the research of 

palliative care itself7. 

Because of this, fundamental gaps in our knowledge of hospice and palliative patients 

exist, especially in terms of evidence-based studies. More robust studies are needed to 

decrease treatment difficulty and provide the greatest quality of care and optimal 

outcomes. 

1.2 Pain Management 
 

Pain is a substantial burden in patient care, significantly impacting a patient's quality 

of life. Managing pain becomes much more complex and multifactorial in the palliative 

and hospice environment. Pain can result from the primary disease state and its 

treatments, such as surgery and narrow therapeutic index drugs8. There is also pain 

unrelated to the disease state, such as psychological factors, anxiety, depression, and 

anger9. All these factors make treatment difficult. 

While there are many non-pharmacological and pharmacological methodologies for 

treating pain, opioids remain the front-line treatment. They are the most effective 

medications in terms of alleviating pain. Opioids come with their difficulties. Dosing 

opioids has always been problematic, with incredibly varied pain responses among 

patients10. Genetic variation among patients increases the likelihood of errors in dosing. 
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Currently, the FDA only recommends genomic testing for codeine and no other opioids11. 

The palliative and hospice patient population is far from typical. They are likely over 65, 

have multiple co- morbidities, and take multiple medications12. There is also the fact that 

palliative care patients stay much longer in the hospital than other patient populations12, 

further increasing their vulnerability to dosing errors. In palliative care, errors in opioid 

prescribing are considered the primary cause of medical errors in the palliative care 

field12. The most common medication error involving opioids was underdosing. 

Underdosing accounted for about 66% of the dosing error for opioids13. 

The reasons for this are twofold: There is a lack of empirical-based research in 

palliative care14, making concrete methodologies challenging to establish with so few 

studies. Next, there is a lack of knowledge about prescribing opioids among healthcare 

professionals, along with misconceptions, myths, and fears of addiction15. Clinicians, 

caregivers, and others in the palliative and hospice field would benefit from additional 

tools to prevent opioid errors. 

1.3 Opioid Pharmacodynamics 
 

The creation of pain relief by opioids occurs by binding to G-protein-coupled 

receptors. The primary location of G-protein-coupled receptors is in the brain and spinal 

cord. The critical receptors involved in opioid pharmacology are the µ, δ, and κ receptors. 

The therapeutic role of opioids in pain management is versatile. They exhibit varying 

degrees of activity as a full agonist, partial agonist, or antagonist across many receptor 

types16. 

These opioid receptors interact with G proteins and, as a result, can influence 

intracellular Ca2+ disposition and the phosphorylation of proteins17. Opioid receptors are 
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a type of G-protein-coupled receptor (Gi or Go), characterized by seven transmembrane 

regions. They close voltage-gated Ca2+ channels on pre-synaptic nerve terminals, which 

reduces neurotransmitter release. 

Second, they induce the opening of K+ channels, resulting in hyperpolarization and 

the subsequent inhibition of post-synaptic neurons18. Opioids have been observed to 

decrease neurotransmitter release through pre-synaptic action across a wide range of 

neurotransmitters, including glutamate (the primary excitatory amino acid released from 

nociceptive nerve terminals), acetylcholine, norepinephrine, serotonin, and substance P19. 

These effects are mediated by the opioid receptor family. These receptors consist 

of the µ (mu), κ (kappa), δ (delta), and ORL1 (Nociceptin/Orphanin FQ) subtypes20. The 

µ receptor is the most common and abundant of the opioid receptor family. The µ 

receptor plays a crucial role in supraspinal analgesia in addition euphoria. In the central 

nervous system (CNS), µ-opioid receptors are widely distributed21. In the periphery, µ-

opioid receptors can be found but are less prevalent than in the CNS. They appear in 

tissues like the intestines, which cause constipation associated with opioid use, as opioid 

binding to these receptors decreases intestinal motility. Individual genetic variations can 

affect binding to µ receptors22. 

The opioid receptors in the CNS allow for the modulation of ascending and 

descending pain pathways. In the ascending pathways, which originate in the spinal cord 

and project to higher brain centers like the thalamus and cortex, opioids act by inhibiting 

neurotransmitter release from primary afferents. This diminishes the propagation of 

nociceptive signals23. Conversely, opioids also affect descending pain pathways, 

specifically those originating from supraspinal sites24. At these locations, opioids inhibit 
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neurons that would otherwise facilitate pain transmission25. This opioid-induced neuronal 

inhibition leads to the activation of descending inhibitory neurons. These neurons send 

axons to the spinal cord, inhibiting pain- transmitting neurons and amplifying opioid 

analgesia26. 

1.4 Opioid Pharmacokinetics 
 

Clinicians commonly administer opioids through subcutaneous, intramuscular, or oral 

routes, and these methods ensure effective absorption27. The first- pass effect causes 

higher doses of some opioids, like morphine, when administered orally, compared to 

subcutaneous or intramuscular routes. Variability in the metabolism of oral opioids 

complicates accurate dosing. Codeine and oxycodone, less affected by first-pass 

metabolism, are better suited for oral administration28. Transdermal patches can deliver 

high-potency analgesics and relieve pain for several days29. When determining the 

optimal administration routes and doses, clinicians must consider the pharmacokinetic 

profile of each opioid. Once administered, all opioids bind to plasma proteins. The 

affinity for binding depends on the opioid in question. Despite this, the drugs rapidly 

leave the blood and localize in the tissues28. They are in the highest concentration in the 

brain, lungs, liver, kidneys, and spleen. Drug concentrations may be low in skeletal 

muscle, but because of its greater bulk, skeletal muscle serves as the main reservoir for 

opioids28. Accumulation in fatty tissues can be significant for certain opioids, especially 

after frequent high-dose opioid administration or a continuous infusion of highly 

lipophilic opioids that metabolize slowly, such as fentanyl30. 

Opioids undergo metabolism, resulting in the production of polar metabolites, 

most of which are glucuronides. The kidneys eventually eliminate these metabolites 
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through excretion. For example, the prototypical opioid morphine contains free hydroxyl 

groups. These hydroxyl groups are primarily conjugated to morphine-3-glucuronide 

(M3G), a compound with neuroexcitatory properties31. Around 10% of morphine is 

metabolized to morphine-6- glucuronide (M6G). M6G is an active metabolite with 

analgesic potency around four to six times that of morphine32. Despite this, these polar 

metabolites cannot cross the blood-brain barrier. Though, accumulating these metabolites 

may produce toxic effects in patients with renal failure or when exceptionally high doses 

are administered over a long period33. 

Codeine, oxycodone, and hydrocodone undergo metabolism in the liver by the P450 

isozyme CYP2D6, producing metabolites of greater potency34. Codeine is demethylated 

to morphine, and hydrocodone is metabolized to hydromorphone. Though oxycodone 

metabolites are not generally responsible for the analgesic activity of the medication, they 

can accumulate in cases of renal failure35. 

Opioids are primarily eliminated through urine excretion. Small amounts of 

unchanged drugs may be detected. Once more, the danger is renal impairment, with 

metabolites having an increased effect, especially at high doses36. 

1.5 Opioid Resistance 
 

A critical phenomenon that contributes to the difficulty in opioid prescribing is opioid 

resistance. Though opioid resistance is sometimes used interchangeably with tolerance, 

these terms differ. Opioid resistance differs from opioid tolerance in several ways. In 

opioid tolerance, tolerance develops from repeated opioid exposure over time37. 

Tolerance requires patients to take higher doses to achieve the same analgesic effect. The 

general mechanism is desensitization and downregulation of opioid receptors38. 
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Opioid resistance is a phenomenon that is not solely attributed to prior or prolonged 

exposure to opioids. Opioid resistance manifests as an absence or markedly reduced 

efficacy of analgesic response even when the doses of opioids are escalated. This 

resistance can be categorized into innate and. There are multiple factors involved in 

opioid resistance. One such factor is epigenetic changes39. A recent definition of 

epigenetics is ‘the structural adaptation of chromosomal regions to register, signal or 

perpetuate altered activity stages’40. Epigenetic changes are a bridge between genes and 

the environment. 

In contrast to evolution, these changes can accumulate over a lifetime, allowing quick 

adaptability to changing environmental conditions41.They can be caused by 

environmental stressors as well as aging. These changes can also occur due to disease, 

particularly in cancer. 

Two primary types of epigenetic changes occur in individuals: DNA methylation and 

histone modification via acetylation or methylation42. DNA methylation happens when 

methyl groups bind to cytosines at CG-dinucleotides within CpG islands, primarily found 

in upstream gene promoter regions43. However, methylation can occur at any other loci 

throughout the genome. On the other hand, histone modifications alter chromatin 

conformation. Histone acetylation opens the chromatin, while deacetylation closes it. 

These mechanisms regulate gene expression throughout the chromosome44. 

In terms of opioids, epigenetic regulation, specifically the acetylation of lysine 

residues on histone proteins in spinal tissues, has modulated increased sensitivity to pain 

following surgical procedures and the development of reduced responsiveness to opioids, 

commonly referred to as tolerance45. The desensitization of opioid receptors occurs when 
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G-protein-coupled receptor kinases facilitate the phosphorylation of these receptors, 

followed by arrestin binding46. 

Another factor that is involved in opioid resistance is microRNAs (miRNA). These 

are non-coding, functional RNAs that play essential roles in gene regulation. These are 

typically 17 to 24 nucleotides long. miRNAs can bind to protein-coding messenger RNA 

(mRNA) to post-transcriptionally repress protein expression47. A large amount of 

expression of miRNA is found in the CNS. mRNA is responsible for neuronal 

development, including cell specificity and neuronal patterning48. miRNAs are also still 

expressed in adult neurons at high levels. There has also been evidence that miRNAs can 

down-regulate the mu opioid receptor (MOR) 49. One method includes miRNA-16 can 

bind to the 3′-untranslated region (3′-UTR) of mRNA and weaken the translation of MOR 

mRNA50. 

In addition to epigenetic factors and miRNA, there are individual genetic variations. 

These gene variations can affect the pharmacodynamics and pharmacokinetics of 

opioids51. These genetic variations further complicate opioid dosing. Hospice and 

palliative care patients can face significantly high doses of opioids that should be toxic 

(or even lethal) but have no effect at all, analgesic or otherwise, due to opioid 

resistance52. 

1.6 Pharmacogenomics 

Interindividual reactions to drugs, including opioids, falls under the study of 

Pharmacogenomics (PGx), a field focusing on the genome in drug response. This field 

seeks to understand how genes and genetic variation influence a patient’s response to a 

particular drug. While considered relatively new, human geneticist Dr. Fredrich Vogel 

coined pharmacogenetics in 195953. Initially, this term was used to describe gene-drug 
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interactions. With the advent of the human genome project in the 1990s, 

pharmacogenetics became PGx. That is the study of how drugs interact with the total 

genome to influence biological pathways and processes54. 

An individual's drug response is the phenotype of a pharmaceutical compound's two 

important features: pharmacokinetics or pharmacodynamics. This results in four possible 

drug phenotypic expressions: efficacy without toxicity, efficacy with toxicity, toxicity 

without efficacy, or neither effect nor toxicity55. The classic example of 

pharmacogenomic toxicity involves the gene Thiopurine methyltransferase (TMPT).  

Thiopurines are first-line agents for myeloid leukemia and act as 

immunosuppressants. Genetic factors drive the metabolism of thiopurines and their 

efficacy56. Thiopurines are a classic example of PGx in clinical medicine since anyone 

taking these drugs must undergo genetic testing. Genetic testing is required because 

TMPT is involved in the methylation of thiopurines, a phase II metabolic process57. 

Alterations in the TMPT can have toxic and even lethal consequences. Those possessing a 

heterozygous TMPT variant exhibit reduced enzymatic activity for the metabolism of 

thiopurines and have a risk of increased toxic effects, which requires dose modulation58. 

However, those with the homozygous variant do not have enzymatic activity to 

metabolize thiopurines and require an alternative treatment regimen for efficient care. 

Though TMPT is just one gene involved in thiopurine metabolism. Others like 

NUDT15 can contribute to the metabolic pathway and influence the toxicity of 

thiopurines59. Their defined factors and severity make this a classic example of PGx in a 

clinical setting. 

In PGx, various forms of genetic variations are investigated. These include Single 
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nucleotide polymorphisms (SNPs), structural variations from the addition or removal of 

base pairs (also known as indels), and substantial copy number variations that may lead 

to the complete absence or duplication of entire genes60. These variations in genetic 

disposition can play a role in gene expression by modifying the regulation of 

transcription and the splicing process and leading to changes in amino acids or truncation 

of protein-coding sequences61. 

1.7 Single Nucleotide Polymorphisms 

SNPs are the most prevalent genetic variation in humans. The basis for human 

diversity is found in these single nucleotide variations dispersed across all species' 

genomes. SNPs occur in about one in every 300 nucleotide base pairs throughout the 

human genome. Approximately 10 million SNPs are present in the 3 billion nucleotides 

of the human genome62. These are base pair variations located at specific sites in human 

genes63. Millions of SNPs exist in every individual, which makes them great use for 

biomarkers64. Single nucleotide polymorphisms (SNPs) occur throughout the genome and 

can coexist within a genetic region. These SNPs are stable and do not change over time, 

making them ideal for consistent measurements65. Additionally, measuring SNPs is a 

simple process that utilizes PCR-based testing, eliminating the need for complex and 

expensive assays66. 

SNPs may be present in coding or non-coding genome regions, and some may not 

impact the gene product. Sometimes, SNP in a non-coding region influences the 

transcription of the gene. In other instances, even a SNP in the coding region may not 

affect protein structure or function67. 

Synonymous SNPs substitute one nucleotide for another that does not change the 
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amino acid68. Non-synonymous SNPs produce new encoded amino acids. The resulting 

altered proteins could possess different features. An example is a conformational 

alteration that may lead to a change in enzyme activities. In other cases, the function of 

the entire protein may be diminished69. Nevertheless, synonymous SNPs still cause 

disease states and altered gene function. Previously, these were considered 'silent' or 

'neutral.' This line of thought is no longer the case. Silent SNPs can result in abnormal 

mRNA splicing as well as mRNA stability. These factors, like non-synonymous SNPs, 

affect protein expression and enzymatic activity68. 

Because of this, SNPs can alter the pharmacodynamics and pharmacokinetics of 

drugs, including opioids. If SNPs are present, this may account for interindividual 

differences in response to opioid treatment70. Genes containing SNPs may encode 

intracellular targets like transcription factors, drug transporters, receptors, or metabolic 

enzymes. The examples below represent a subset of the SNPs that may contribute to 

variability in opioid effects. 

The gene for the human μ opioid receptor, OPRM1, is controlled by multiple 

promoters and comprises more than one hundred SNPs71. The 118A>G (which possesses 

the accession number in the SNP database [dbSNP] as rs1799971) has been the most 

studied variant in terms of pharmacogenomic research into opioid drugs72. This SNP is 

located in exon 1 of OPRM1 and substitutes adenine (A) for guanine (G). This results in 

an amino acid shift from asparagine to aspartic acid, leading to the receptor's loss of an 

N-glycosylation site73. The loss of this site has been linked to several clinical effects, 

such as increased side effects from opioid doses74. In patients with cancer pain, this 

genetic variation was associated with increases in morphine dose in order to achieve 
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proper pain management75. 

Uridine diphosphate glucuronosyltransferase family 2 member B7 (UGT2B7) is a 

metabolic enzyme involved in the glucuronidation of compounds, such as fatty acids76. 

The central location where UGT2B7 is expressed is in the endoplasmic reticulum of 

hepatocytes. However, UGT2B7 can also be found in the gastrointestinal tract, kidney, 

pancreas, and brain77. UGT2B7 metabolizes morphine into M3G (90%) and M6G (10%). 

Polymorphisms of UGT2B7 have been implicated in influencing interindividual 

variability in morphine dosing. One study reported that the UGT2B7*802T allele 

experienced extended and more significant analgesic effects than those with the 802C 

allele. This may indicate that the 802T allele has reduced glucuronidation activity78. 

Somewhat related to UGT2B7 is the organic cation transporter isoform 1 (OCT1). 

The SLC22A1 gene, which belongs to the solute carrier family 22, encodes the influx 

transporter called OCT1. SLC22A1 is expressed in several tissues, predominant in the 

liver79. UGT2B7 metabolizes morphine in the liver and has a high affinity for OCT 1, so 

gene variants affecting SLC22A1 may impact the metabolism of morphine80. The most 

frequently studied polymorphisms of the SLC22A1 gene relate to a loss of function in the 

OCT1 transporter. In one study, carriers of the loss-of-function OCT1 polymorphism 

possessed significantly higher plasma concentrations of morphine than those that did not 

carry the variant81. In children, the clearance of morphine was significantly lower in 

homozygote carriers of OCT1 loss-of-function variants82. 

The previous examples demonstrate how SNPs in critical genes can influence opioid 

pharmacokinetics and pharmacodynamics. Through research, we can gain a greater 

understanding of genetic polymorphisms and the interaction between drugs. However, 
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the desired end-point for PGx is to apply it to patient care. In this way, PGx can be a 

valuable tool for hospice patients, their caregivers, and healthcare providers in opioid 

treatment. 

1.8 Pharmacogenomics in Practice 
 

The first hurdle to put clinical guidelines for opiates, opioid resistance, or any other 

drug is the link between genotype and phenotype. In PGx, accurate genotype-phenotype 

associations are critical to transitioning into clinical practice. The genotype is defined as 

the genetic variant of the gene of interest. Conversely, the phenotypes are typically linked 

to drug responses. These can include drug-induced toxicity, the efficacy of the drug, the 

concentration of the drug in the bloodstream, or the drug's impact on other biological 

markers within the body83. 

Pharmacogenomic tests in clinical laboratories are currently designed to detect a 

different genotype. Once this variant is detected, the variant is used to assign alleles. 

Then, informed assumptions are made about haplotypes. A haplotype is a set of alleles at 

different loci on a single chromosome84. Haplotypes are typically inferred because most 

analytic methods can identify a variant genotype; they cannot ascertain each variant's 

chromosome position or locus. Instead of general testing, specialized testing is utilized to 

pinpoint the exact location where genetic variations are likely to occur85. The alleles are 

then assembled as a diplotype (a maternal and paternal allele), and the phenotype is 

predicted based on previous studies86. This can be rather complex in certain instances. 

The genotype-phenotype relationship is clearly established for life-threatening or 

toxic variants. There is a gene called human leukocyte antigen (HLA) that has different 

variants. Some of these variants can cause dangerous reactions to certain drugs. Testing is 
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required to determine if a person has at least one of these variant alleles. HLA-B*57:01 is 

a specific variant that is known to increase the risk of hypersensitivity to the drug 

abacavir. Only one allele is needed for a possibly life-threatening immune-mediated 

reaction to the drug87. 

Outside of these variants, risk becomes difficult to pinpoint. Furthermore, for 

synonymous SNPs, the phenotype may be complicated. Since synonymous SNPs do not 

directly change the produced gene product, their effect may lie elsewhere. To find 

genotype/phenotype relationships, research, literature, and clinical studies are needed. 

This also presents its own problems since there are variabilities in studies on defining a 

pharmacogenomic phenotype and agreeing on what that phenotype represents88. Also, the 

wide variety of tests and methodologies has led to genotype-phenotype associations 

failing to be replicated. Clinical tests require standardization due to variations in 

nomenclature. 

PharmGKB (http://www.pharmgkb.org) and the Pharmacogenomics Research 

Network (PGRN) collaborated to form the Clinical Pharmacogenetics Implementation 

Consortium (CPIC) in 2009. The CPIC provides guidelines for pharmacogenomic results 

in accurate prescribing decisions for certain drugs89. The CPIC launched a project 

intending to standardize terminology across PGx. The project involved reaching a 

consensus among experts in pharmacogenetics. The objective was, whenever feasible, to 

agree on standardized terms that could be applied universally across genotypes to define 

both an allele's functional status and the inferred phenotypes based on the combined 

effects of both alleles89. This has allowed for accurate translation into clinical practice. 

In addition to the standardization of results allowing for accurate prescribing 
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information, the nomenclature has also been standardized. PGx uses the Human Genome 

Variation Society (HGVS) nomenclature. This naming system clarifies the genomic 

position of the variant as well as alterations to the DNA, RNA, and protein sequences90. 

In addition, there is the use of the star-allele system. This allows for the 

categorization of sequence variations easily. A *1 typically signifies the reference allele. 

As new variations are discovered, they are sequentially assigned numbered star alleles55. 

An example of the naming system in practice is the CYP2D6*4 allele and one of its 

variants, c.1847 G > A (rs3892097). In this case, *4 is the abbreviation for known 

CYP2D6 alleles containing different variants. The location of the DNA change is 

represented by c.1847, the specific nucleotide shift would be G > A, and the variant name 

and unique location in the genome is represented by rs3892097. 

1.9 Rationale 
 

The purpose of this study partially stems from the gap in research concerning the PGx 

factors that influence the efficacy of opioid therapy in hospice patients. Opioids are the 

cornerstone of managing severe pain. However, their effectiveness varies widely among 

individuals. The effectiveness of opioid therapy is due partly to genetic variations. This 

study aims to discern PGx differences between hospice patients and opioid therapy. 

Utilizing PGx will examine whether there are associations between SNPs in this 

population concerning opioid resistance. This study will be done by cross-referencing 

patient data with molecular genetic information. By doing so, this study seeks to discover 

unique SNPs that differ from previous studies and see if there is a relationship between 

SNPs and patient data. These research questions resulted in three hypotheses found 

below. 
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1.10 Hypotheses 
 

1. Molecular genetics data from hospice patients can be associated 

with patient medical information to identify potential SNPs 

influencing response to opioid medication. 

2. Potential genes linked with resistance to opioid medication can be 

uncovered by correlating molecular genetics data with pain 

measurements, opioid responsiveness, and treatment response. 

3. By identifying individual genetic variations that influence the response 

to opioid medication, clinicians can develop personalized pain-

management plans, potentially leading to improved quality of life and 

reduced side effects for patients in hospice and palliative care. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Instruments Used 

The study employed the Palliative Performance Scale (PPS) as an evaluative tool to 

gauge both the functional status and prognosis of patients receiving palliative care. 

Initially introduced by Anderson et al.91, the PPS utilizes an 11-point scale ranging from 

0% to 100% in increments of 10%. This scale examines four key parameters: ambulation, 

activity, evidence of disease, self-care, and level of consciousness (Figure 1). In this 

study, our focus was on patients having a PPS score of 30%. We chose this threshold 

because patients with this score. However, their functional impairment is significant, 

disease progression is evident, and they can still perform a limited number of daily 

activities with some assistance91. This score indicates relative functional stability, 

suggesting a prognosis that could extend for several weeks. We excluded patients with 

lower PPS scores from the study, as their functional status would be too unstable and 

their life expectancy too short to yield meaningful data. 

A Numerical Rating Scale for Pain (NRS) was utilized to assess the average and 

maximum pain of study participants (Figure 2). The NRS is among the most common 

pain scale instruments used in hospice care92. This 11-point scale ranging from 0 (“no 

pain”) to 10 (“worst possible pain) has demonstrated clinical utility in assessing changes 

in chronic pain intensity93. Patients will be asked to grade their average and worst level of 

pain in the previous 24 hours (maximum pain) due to the primary diagnosis at the end of 

each visit. 

The Numerical Opioid Side Effect (NOSE) Assessment Tool (Figure 3) was used 

to record common opioid side effects experienced by patients during the study94. The 
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NOSE records the severity of 12 opioid side-effects on an 11-point scale from 0 ("not at 

all") to 10 ("extremely"). Total NOSE scores can range from 0 to 120, with higher scores 

indicating a more significant side effect burden. 

In order to create a standard among opioid doses, morphine milligram equivalents 

(MME) were used. Patients use different opioids and different opioid dosing regimens, so 

it was necessary to standardize them. These conversion factors have been established by 

the Centers for Disease Control and Prevention (CDC). For example, 10 mg of 

hydrocodone is equivalent to 10 mg of morphine, while 30 mg of oxycodone is 

equivalent to 20 mg of morphine95. By MME conversion, the total daily opioid doses for 

patients taking different opioid medications can be compared using a standardized metric 

(Figure 4). 

2.2 Pharmacogenomic Analysis 
 

Buccal swab samples were collected by Puritan DNA/RNA shield for sample 

collection and preservation from Puritan Medical Products (Guilford, ME). These were 

then sent to Admera Health (South Plainfield, NJ). Admera Health is certified under the 

Clinical Laboratory Improvement Amendments (CLIA) as qualified to perform high- 

complexity clinical laboratory testing. Admera Health utilized its PGxOne™ Plus assay, a 

next-generation sequencing panel that analyzes 50 pharmacogenomically relevant genes 

and 211 variants of those genes. These genes were chosen based on their availability at 

Admera, the researchers in the study as well as the Clinical Pharmacogenomics 

Implementation Consortium (CPIC) and Dutch Pharmacogenetics Working Group 

(DPWG), and the United States Food and Drug Administration (FDA) work group 

guidance.The report from Admera is comprised of three sections (Figures 5 and 6). The 
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first section reviews the pharmacogenomic implications for the patient’s existing 

medications and their conditions. The conditions coded by the International Classification 

of Diseases, 10th Revision (ICD-10). The clinician provided the information about the 

patient’s disease state and medication. Gene-drug interactions are organized 

alphabetically by drug name and categorized based on the potential impact on 

prescribing: consider alternatives, use with caution, and adjust dose/monitoring. 

The second section summarizes pharmacogenomic information for approximately 100 

commonly used medications across therapeutic areas. Drugs are grouped by class and 

mechanism of action. Guidance is provided on gene-drug effects and recommended 

prescribing considerations. The final section is pure pharmacogenomic information. The 

clinical results page displays the patient’s gene, genotype as well as phenotype. The full 

gene list, along with phenotypes and genotypes, that were analyzed is available in 

Appendices 1. 

2.3 Ethics and Regulatory 
 

This study was submitted to the Institutional Review Board (IRB) under protocol 

#18113-01. This study adhered to ethical principles outlined in the Declaration of 

Helsinki and complied with the guidelines for Good Clinical Practice from the 

International Conference on Harmonization (ICH/GCP). All applicable regulatory 

requirements related to human subject research will be followed. 

All patients were provided with written informed consent prior to study 

participation following ethical principles. Principal investigators ensured patients were 

given comprehensive oral and written information about the study purpose, possible risks 

and benefits, and their rights as participants. Patients had opportunities to ask questions 
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and time to consider the information before providing signed and dated informed consent 

agreeing to take part. Principal investigators maintained all original signed consent forms 

per site procedures. The approved consent materials included descriptions of any 

incentives or provisions for patients potentially harmed by the study. Patients were 

notified that they could voluntarily discontinue their participation at any point. Informed 

consent procedures protected patient rights and adhered to ethical guidelines for human 

subject research. 

In terms of risk, the main factor is the loss of privacy and confidentiality. Patient 

data will be used with the utmost care. Confidentiality was ensured through several 

measures. All computers required individual logins and full disk encryption, maintained 

by information technology (IT) staff. Servers storing study data were secured with routine 

backup procedures. Physical hard copies were stored in locked filing cabinets in secured 

rooms, only accessible to study personnel. Patient data was anonymized by using a 

unique numeric code for each patient. The code key was not stored on any computer or 

information network but in secure rooms. No individually identifiable information was 

contained in patient codes. 

Due to the study population's expected deterioration, serious adverse events may 

occur (SAEs). These were defined as unexpected adverse outcomes such as 

hospitalizations, disability, or death that are not part of normal disease progression. Any 

SAEs assessed by clinicians potentially related to study procedures would be reported as 

Suspected Unexpected Serious Adverse Reactions (SUSARs) to oversight bodies. All 

adverse events were monitored, including undesirable symptoms or deteriorating 

conditions, regardless of causality. All unexpected and related adverse events were 
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documented in the participant's records and reviewed following research guidelines. 

2.4 Study Design 
 

Patients and clinicians were recruited from a single healthcare system to eliminate 

variability within healthcare systems and protocols. 

Clinicians were eligible to be recruited for the study if they were physicians or 

nurse practitioners involved in practicing hospice and palliative care and were 

responsible for making and implementing decisions about opioid therapy for pain. 

Clinicians were identified by the investigators and were provided IRB-approved signed 

informed consent. The clinicians recruited for the study helped to identify potential 

candidates. The inclusion criteria for patients are indicated in Table 1, and the exclusion 

criteria are detailed in Table 2. There was no exclusion criteria for clinicians. They were 

recruited only if they met the inclusion criteria. 

Research personnel themselves explained the study to patients who consented to 

receive information. Patients who consented to the study had three study visits. The first 

visit was a baseline visit. At the patient's baseline visit, eligibility and inclusion criteria 

were established. Patients identified as appropriate for the study and agreed to participate 

signed Informed Consent forms. Signing of consent forms was done prior to the 

completion of any study procedures. During the baseline visit, patients enrolled in the 

study completed a basic questionnaire and provided a cheek swab for pharmacogenomic 

analysis. Other data included recording the PPS score, NRS scale measurements, and a 

review of medications (opioid and non-opioid) were all recorded. The cheek swabs were 

shipped to Admera Health to undergo a PGxOne™ Plus assay. 

The turn-around for the PGxOne™ Plus assay was available for review by the 
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investigator’s clinical pharmacist 72 h after receiving a patient sample. The PGxOne™ 

report was sent to the patient's treatment team with suggested recommendations (based on 

pharmacogenomic analysis) between 24 – 48 h after review by the investigator’s clinical 

pharmacist. 

Visit two occurred between 5 and 14 days and was conducted either by phone or 

by an in-person clinic visit. Changes to medications were solely at the clinician’s 

discretion and reviewed once more. During this evaluation, another NRS scale was given. 

The PPS score was only given once as recruitment criteria. Any adverse events that were 

present were collected and reviewed. 

Visit 3 occurred on day 28, within a margin of +/- 7 days. This visit was to collect 

follow-up questions and re-evaluate pain therapy. Clinicians in charge of the patients 

could intervene or make any modifications during the study. A final NRS scale and a 

concluding NOSE scale were given to the patient. Medications and adverse events were 

given a final review. Patients were also given follow-up questionnaires about their 

emotional state and feelings, and pain therapy was re-evaluated. This final visit would 

conclude study participation. 

2.5 Database Construction 
 

In order to properly statistically analyze the data, all patient information was compiled in 

a database using Excel 2022 (Microsoft Software, Redmond, WA). This database was constructed 

using compiled anonymized data for 18 patients receiving hospice and palliative care. Variables 

extracted from medical records and rating instruments included: demographics (gender, age, 

ethnicity), clinical status (Palliative Performance Scale (PPS) score, primary/comorbid diagnoses, 

substance abuse disorders), and medications (opioids, non-opioid analgesics, other medications 

and morphine equivalent doses). Average and maximum pain were based on NRS measurements 
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provided by the patients during the three visits. In addition to patient records, pharmacogenomic 

data was compiled from each patient report provided by Admera Health. 

Categorical variables were coded numerically in order to facilitate statistical analysis. For 

example, gender was coded as 1 = male and 2 = female. In total, about 61 variables across the 

categories of demographics, clinical status, medications, symptoms, pharmacogenomics, and 

other related factors. These variables were carefully selected to provide a comprehensive 

overview of the factors that might influence the efficacy of opioids. In addition to the compiled 

database, separate data sheets were created for each of the 50 genes analyzed over each of the 18 

patients for a more straightforward analysis. 

2.6 Statistical Analysis 
 

Minitab® 20.4 (Pennsylvania State University, PA) was used to analyze the patient 

database statistically. The primary statistical model used in order to analyze the database was the 

General Linear Model (GLM). This is because the dataset is a combination of multiple types of 

variables. The model contains continuous variables (e.g., age, PPS scores) and coded categorical 

factors (e.g., disease codes, gender). This model also provides more statistical power to detect 

effects than ANOVA models96. The GLM is also well-suited to handle group sizes that are not 

balanced, such as different variables having an uneven number of patients. The model also allows 

testing for interactions between variables (such as if the effect of a particular genotype differs by 

ethnicity). The F-value in the GLM evaluates which predictors are significantly associated with a 

variable. This allows the GLM to assess whether different predictors on a particular variable are 

statistically significant. This is paramount for determining which predictors are essential for 

understanding pain levels. Calculations of the regression equations used can be found in 

(Appendices 1). 

Individual predictors with p-values < 0.05 were considered statistically significant. 

Tukey's HSD post hoc test was utilized when the GLM detected significant effects. F-value 

indicates the ratio of model improvement over error, with higher values indicating more variance 
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explained by model predictors. F-values exceeding critical values based on the degrees of 

freedom provide evidence of an overall significant model beyond chance. 
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Figure 1: Palliative Performance Scale. The 11-point Palliative 
Performance Scale (PPS) used to assess patient functional status and 
prognosis at baseline and throughout the study. Patients were required to have 
a PPS of at least 30% for study inclusion97.
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Figure 2: Numerical Rating Scale for Pain. The NRS was used to assess the 
pain of patients during visitations93 
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Figure 3: Numerical Opioid Side Effect Scale. Patients completed the NOSE 
during required visits, rating the severity of the following side effects: nausea, 
vomiting, drowsiness, tiredness, dizziness, itching, constipation, dry mouth, 
headache, sleep problems, sweating, and confusion94. 
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Figure 4: Dose Conversion Table for MME. This is the conversion 
methodology used to convert various opioid doses into MME. It is in 
accordance with the CDC guidelines of 201695. 
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Figure 5: Patient Pharmacogenomic Report. An example of a patient’s 
pharmacogenomic report. The patient's name is coded as a number to protect their 
privacy. 
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Figure 6: Patient Report for All Genes. An example of a patient’s 
pharmacogenomic report. The patient's name is coded as a number to protect 
their privacy. It shows their genotype and phenotype combination for target 
genes, 
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CHAPTER 3. RESULTS 

3.1 Demographic Data 

Our patient sample was composed of 18 patients, with 38.89% (n=7) female and 

61.11% (n=11) male participants (Table 3). In the present study, the patient pool 

comprised a diverse ethnic background, including 27.78% African American (n=5), 

5.56% Asian (n=1), 27.78% Hispanic (n=5), and 38.89% Caucasian (n=7) hospice and 

palliative care patients. The age of the participants spanned a wide range, from 37 to 84 

years, with a modal age of 64 years, constituting 27.78% of the sample (n=5). 

Furthermore, addiction and substance abuse factors were also evaluated: 55.56% of 

the participants were smokers (n=10), and 38.89% had a documented history of substance 

abuse disorder. Our study involved patients diagnosed with multiple chronic and terminal 

conditions. These included alcoholic liver cirrhosis, chronic obstructive pulmonary 

disease (COPD), several conditions co-morbid with HIV, end-stage congestive heart 

failure (CHF), fibrosis of the lung, and multiple types of cancer (Table 4). The most 

common medical condition among the participants was COPD at 27.78% (n=5). 

Patients recruited for the study were on at least one opioid, which included 

morphine, oxycodone, tramadol, fentanyl, hydromorphone, and methadone. In order to 

equalize the amounts of morphine used per patient, a calculated morphine dose was used 

based on CDC guidelines. The calculated morphine doses showed a wide variation across 

the sample, from 20 mg at 5.56% (n=1) up to 540 mg at 11.11% (n=2), indicating the 

differential opioid response and tolerance among the participants (Table 5). 

3.2 Descriptive Statistics 
 

For this study, descriptive statistics were analyzed for basic demographics, the main 
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variables (average pain, maximum pain, calculated morphine dose, and PPS%), opioid 

side effects, and drug interactions. These were conducted in addition to regression 

analysis and the GLM. 

3.2.1 Descriptive Statistics of Demographics 
 

Gender was coded with 1 and 2 (1= male, 2= female). The mean was 1.389 with a 

standard error (SE) of 0.118. The standard deviation (SD) of 0.502 indicates a near-even 

distribution of male and female participants in the study. The age range of patients was 

37 to 84 years, with a mean age of 63 years (SE=3.02), a median age of 64 years, and an 

SD of 12.79 years. Most of the study participants were older adults, with the age 

distribution being slightly negatively skewed, indicating a relatively uniform age 

distribution with fewer outliers. Ethnicity was coded from 1 to 4 (1 = Caucasian, 2 = 

Hispanic, 3 = African American, 4 = Asian). While skewness and kurtosis were 

calculated (0.43 and -0.96, respectively), these measures are generally more interpretable 

for continuous variables and may not provide meaningful insights into the distribution of 

categorical variables such as ethnicity. 

Due to the patients having multiple chronic conditions, a primary disease state was 

assigned to each of the 18 study participants based on the organ affected or whether it 

was cancer. They were coded as follows: 1 = disease of the lung, 2 = cancer (any type), 

3= disease of the heart, and 4 = liver disease. Cancer was indicated as the primary disease 

if any conditions were co-morbid with cancer. The mean value for the primary disease 

code was close to cancer at 1.889 (SE=0.227). Given that each disease was coded from 1 

to 4, this mean value indicates that most patients fell within the first two categories (lung 

disease and cancer). The distribution of diseases was slightly skewed to the right at 1.13, 
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suggesting that a more significant proportion of patients in the sample had diagnoses 

coded lower (i.e., lung disease and cancer). However, there were still substantial numbers 

of patients with heart disease and Liver Disease, as shown by the range and the median 

value of 2 (which lies between Cancer and Heart Disease). The kurtosis value of 0.83 

indicates a slightly more peaked and heavy-tailed distribution than a normal distribution. 

This value suggests that there are more frequent extreme deviations from the mean in our 

dataset, which could imply a higher likelihood of observing certain diseases over others 

in our sample. 

3.2.2 Descriptive Statistics of Main Variables 
 

The mean Palliative Performance Scale (PPS) score was 42.22 (SE = 1.73), with 

scores ranging from 30 to 60 (Table 6). This wide range underscores the heterogeneity in 

patient conditions within hospice and palliative care settings. The distribution of these 

scores was slightly right-skewed (skewness = 0.63), suggesting a tendency towards PPS 

scores. Furthermore, the mean square successive difference (MSSD) of 35.29 indicates 

substantial variability in patient conditions throughout the study. 

Regarding pain management, the mean average pain score was 5.83 (SE = 0.513), 

with a standard deviation of 2.176. This moderate spread in pain scores across the study 

population implies varying levels of pain intensity among participants. Moreover, the 

mean for maximum reported pain scores were significantly higher at 7.66 (SE = 0.577), 

highlighting that patients often experience acute episodes of severe pain that exceed their 

average levels. 

In our sample, MME was 187.7, with a considerable standard deviation of 194.8, 

emphasizing the high variability in dosing among participants. This was further 
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highlighted by the broad range of MMEs, which ranged from 20 to 540 mg. The 

skewness of 1.9 and a significant mean square successive difference (MSSD) of 45,216.6 

indicate a tendency toward higher dosages, with several outliers and significant 

fluctuations between different MME values. 

3.2.3 Descriptive Statistics for Opioid Side Effects 
 

The evaluation of opioid side effects was measured using the NOSE scale for 

patients (Table 7). Contrary to conventional wisdom that nausea is a common adverse 

effect of opioid use, our findings suggest otherwise. Most patients reported no nausea; the 

mean score was relatively low at 2.167. The data exhibited positive skewness and a high 

level of kurtosis, indicating that extreme nausea cases were rare but existed. 

Fatigue, with a mean score of 2.778, appeared less of a problem for a substantial 

portion of the patient sample, as evidenced by a median and mode of zero. The negative 

kurtosis suggests that extreme fatigue is even less common, corroborating the general 

low-to-moderate impact of this side effect. 

However, constipation and dry mouth were the most severe side effects. The 

former had a high mean score of 4.222 with considerable variance, while the latter's mean 

score was an even higher 4.778. Both side effects showed significant inter-individual 

variability, stressing the need for personalized intervention strategies. 

Itching and abdominal pain were generally moderate but displayed high inter- 

individual variability, as evidenced by their standard deviations. In contrast, sweating was 

the least frequently reported side effect, with the highest score only reaching 5 out of 10 

on the NOSE scale. This suggests that sweating may be of lesser concern in this patient 

population. 
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Headaches and urinary retention presented with wide dispersion from their means, 

suggesting that while these side effects are not universally experienced, they can be 

severe when they do occur. 

The standard deviations and skewness of side-effect profiles point to high inter- 

individual variability, while the mean scores indicate which side effects are most pressing 

on a population level. This suggests that while nausea and fatigue may not be as 

significant as traditionally believed, attention should be given to constipation and dry 

mouth, among others, for targeted interventions. 

3.2.4 Descriptive Statistics for Medication Interactions 
 

In addition to side effects, demographics, and main variables, drug-drug 

interactions and drug-opioid interactions were analyzed (Table 8). On average, there were 

less than 1 (0.889) possible drug interactions per participant, with a standard deviation of 

1.132, indicating variability in this measure. MSSD was 1.353, demonstrating the 

variability of possible drug interactions across subjects or over time. 

Further, the average number of severe drug interactions was significantly lower at 

0.278 per participant. The skewness of 1.08 and a negative kurtosis of -0.94 suggest that 

most participants had no severe drug interactions. The average number of drugs that did 

not interact was around 2.667 per participant, with a SD of 1.328. 

This showed a considerable spread. There was a slight negative skewness and 

kurtosis, indicating the distribution was slightly skewed to the left, indicating fewer 

extreme values. The average number of drug interactions affection opioids was around 1 

per participant. A high skewness of 1.86 and high kurtosis of 4.29 show that many study 

participants had few interactions. 
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Lastly, the study's total number of drugs per patient averaged more than 3 per 

participant. While this may seem small, consideration must be taken that the majority of 

patients were for end-of-life-care, which prioritizes quality of life and treatment is 

generally ceased. There was an SD of 1.689, which shows a large variability in this 

measurement. For patients, the total number of drugs presented with a low skewness of 

0.2 and kurtosis of 0.42, suggesting a symmetrical distribution similar to a normal 

distribution. 

3.3 Non-Genomic Statistical Analysis 
 

The four main variables of interest (average pain, maximum pain, MME, and PPS%) 

were compared to demographic variables. Ethnicity, gender, substance abuse, smoking, 

and disease state were not significant to any of the four main variables. However, age 

was correlated with morphine dose (Table 9). A simple linear regression was conducted 

to discover the relationship between age and the MME (Figure 7). This indicates that the 

calculated MME decreases by approximately 8.20 mg for each additional year of age. 

This finding is statistically significant but accounts for only 25% of the dose variability 

when adjusted for model complexity, thereby indicating that while age is a notable factor 

in morphine dosing, it does not fully account for the variation in dosing. Age significantly 

predicted morphine dose (F(1,16) = 6.54, p = 0.021). Age explained 29.01% of the 

variance in MME dosing (R-squared = .29). The adjusted R-squared of .246 indicates that 

approximately 25% of the variance in dose can be accounted for by age after adjusting 

for model complexity. 

In terms of opioid-related side effects, demographics were analyzed, and it was found 

that gender, ethnicity, and age had several significant associations (Table 10). The table 
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includes effects of factors like gender, ethnicity, and age on various side effects such as 

constipation, dry mouth, abdominal pain, urinary retention, sweating, and itching. 

The statistical analysis of patient data revealed intricate relationships between 

demographic variables and the morphine dose and its associated side effects. While 

variables like ethnicity, gender, substance abuse, smoking, and disease state showed no 

significant impact on morphine dose, they manifest associations with various side effects. 

Gender significantly influenced the incidence of constipation, dry mouth, abdominal 

pain, and urinary retention, accounting for approximately 30-36% of their variability. The 

association between gender and these side effects raises the possibility that the 

pharmacodynamics of morphine may vary between genders, suggesting a need for 

gender-specific guidelines in managing these side effects. 

Age demonstrated a strong relationship between the incidence of itching and sweating. 

This relationship explained more than 90% of their variability. It is uncommon to find 

high R-squared values in clinical studies. While it can indicate a strong correlation, it 

may also indicate overfitting of the model. 

Unexpectedly, the MME had no significant influence over any of the expected side 

effects. The lack of association is notable because conventional wisdom would make one 

expect higher doses to have more severe or frequent side effects (Table 11). The lack of 

association between MME and side effects suggests other variables influence them, such 

as PGx related to opioid resistance or pharmacokinetic factors. 

3.4  Genomic Statistical Analysis 

Of the 50 genes analyzed, 24 demonstrated statistically significant associations across 

key variables (average pain, maximum pain, PPS%, and MME) and opioid side effects. 
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These associations did not extend to age, drug interactions, or gender. The genomic 

influence was primarily on pain perception and opioid response. However, one gene, 

IFNL3, emerged as significant concerning ethnicity (Table 12). 

The GLM for the African American population was particularly strong, accounting 

for half the observed variance (48.08% R-sq) in the Favorable and Unfavorable response 

genotypes. The model was statistically significant (F(1,6)=14.81, p= 0.001). The positive 

coefficient for the Unfavorable Response Genotype implies that African Americans are 

likelier to exhibit this genotype. 

In contrast, the model was statistically significant for the Caucasian population, but 

the lower percentage of the variance (23.44% R-sq), with an F-value of 4.90 and a p- 

value of 0.042. The coefficient for the unfavorable response genotype was negative, 

suggesting Caucasians are less likely to possess this phenotype. 

It is worth noting that these findings align with previous research on ethnic 

distribution of the IFNL3 genotype98. This lends additional weight to our results and 

underscores the necessity for targeted, ethnicity-based approaches in PGx studies. 

3.4.1 Average Pain 
 

Regarding average pain, statistical significance was discovered across four genes: 

AGTR1, HTR2A, SLCO1B1, and UGT2B15 (Table 13).  

For AGTR1, we examined two variables: genotype (wild type WT/c.*86A>C and 

WT/WT) and phenotype (rs5186 AA genotype and rs5186 AC genotype). The GLM 

significantly affected genotype and phenotype (F(1,16)=8.96, p=0.009). These models 

explained about 36% of the variability in average pain levels with R-squared adj = 

31.89%. Those with the WT/c.*86A>C and the SNP rs5186 AC reported higher average 
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pain levels than the WT/WT group. 

In HTR2A, our GLM with three genotypes (c.614-2211T>C/c.614-2211T>C, 

WT/c.614-2211T>C, WT/WT) showed a significant effect of genotype on average pain 

(F(2,15)=4.24, p=0.035). This model accounted for about 28% of the variability in 

average pain levels. This results in the genotype WT/c.614-2211T>C being associated 

with a decrease in average pain compared to the wild type. 

For SLCO1B1, the model demonstrated a significant effect of both genotype 

(*1/*1, *1/*5) and phenotype (Intermediate Activity, Normal Activity) on average pain 

levels (F(1,16)=4.69, p=0.046). The models explained that about 18% of the variability in 

average pain levels through an adjusted R-squared was 17.82%. In terms of genotype, 

this indicates that individuals with the *1/*1 genotype have a slight increase in pain over 

those with the *1/*5 genotype. For phenotype, it means that the intermediate activity 

phenotype will have a slightly lower average pain score when compared to the normal 

activity phenotype. 

Lastly, in UGT2B15, we detected a significant effect of genotype (*1/*1, 

*1/*2,*2/*2) (F(2,15)=5.19, p=0.019) and phenotype (rs1902023 AA genotype, 

rs1902023 non- AA genotype) (F(1,16)=9.52, p=0.007) on average pain levels. These 

models explained about 33% and 33.39% of the variability in pain, respectively, through 

the adjusted R-squared. This means that the presence of the *1/*1 genotype is associated 

with an increase in average pain. In contrast, the presence of the *1/*2 genotype is 

associated with a decrease in average pain, and the 2*/2* genotype is associated with a 

slight decrease in pain. For phenotype, individuals with the AA genotype have a higher 

than average pain score, while individuals with the non-AA genotype have a lower 
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average pain score. The effect of these genes on average pain is summarized in Table 14. 

3.4.2 Maximum Pain 
 

For maximum pain, there was a significant association between several genes. 
 
These include: COMT, CYP1A2, CYP2B6, DRD1, FAAH, MTHFR and SLCO1B1 (Table 
 
15). For COMT, the GLM revealed significance in maximum pain on phenotype (F(1,16) 
 
= 4.96, p = 0.041). This model explained around 23.67% of the variance in maximum 

pain due to its R-squared value. Non-MET homozygous individuals had higher maximum 

pain scores by around 2.79 points on average. 

Regarding CYP1A2, the GLM demonstrated that genotype significantly affected 

maximum pain (F(4,13) = 8.37, p = 0.001), with R-squared showing 72.03% of the 

variance on maximum pain. The different genotypes had varying influences on pain, with 

the *1A/*1F, *1C/*1F/*1F, and *1F/*1F genotypes increasing pain scores. In this case, 

the *1A allele represents the wildtype allele. *1C and *1F are variant alleles that can 

affect pharmacodynamics. Regarding phenotype, significance was found (F(1, 16) = 5.19, 

p = 0.037), with the model explaining 24.51% of the variance in maximum pain. The 

normal metabolizer group reported lower maximum pain than the high inducibility 

metabolizer group. 

CYP2B6 was analyzed both on the level of genotype and phenotype. There was a 

significant difference in the max pain scores across the four genotypes (F(3,14)=3.36, 

p=0.050). The regression model explained 41.83% of the variance in the max pain scores, 

with an adjusted R-squared of 29.37%. For specific genotypes, patients with the 

A785G/A785G/G516T genotype experienced significantly less pain compared to those 

with the *1/*1 genotype. Conversely, those with the A785G/A785G/G516T/G516T 
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genotype experienced more pain than the Wild Type. In phenotypic analysis, there was a 

significant difference in max pain scores across phenotypes (F(3,14)=3.36, p=0.050). The 

GLM accounted for 41.83% of the variance in max pain scores based on the R-squared 

value. The G516T Heterozygous/A785G Homozygous genotype scored 4 points lower on 

maximum pain scores. The G516T Homozygous/A785G Homozygous variable had on 

average 3 points higher on maximum pain than the wild type. Conversely, individuals 

with the 'G516T Homozygous/A785G Homozygous' genotype had on average 3 points 

higher maximum pain scores compared to individuals with the Wild Type. 

DRD1 showed significance in both genotype and phenotype concerning the 

maximum pain score. For genotype, it was significant (F(2,15)=4.48, p=0.030), with the 

model accounting for 37.37% of variance based on the R-squared. Compared to the c.- 

48G>A/c.-48G>A genotype, the WT/WT genotype showed lower maximum pain scores. 

In terms of phenotype, it significantly affected maximum pain (F(1,16) = 8.00, p = 

0.012). The results indicated that the phenotype accounted for approximately 33.33% of 

the variation in max pain, with an adjusted R-squared value of 29.17%. The rs4532 non- 

CC genotype was associated with significantly higher maximum pain than the rs4532 CC 

genotype. 

The FAAH genotype on maximum pain scores was significant (F(2,15)=4.12, 

p=0.037), with the model accounting for 35.48% of variance based on the R-squared. 

Compared to the c.385C>A/c.385C>A genotype, the WT/c.385C>A and WT/WT 

genotypes showed higher maximum pain overall. The phenotype was also significant 

(F(2,15)=4.12, p=0.037). The rs324420 CA and CC genotypes had higher maximum pain 

than the rs324420 AA genotype. The R-squared for the phenotypic analysis was the same 
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as for the genotype. 

The GLM utilized for MTHFR indicated significance in both genotype and 

phenotype. In terms of genotype, there was significance found across the genotypes 

studied (F(5,12)=4.33, p=0.017). The model accounted for 64.35% of the variance, but 

that was lowered with an adjusted R-squared of 49.49%. Compared to the 

A1298C/A1298C genotype, the C677T/A1298C genotype was associated with lower max 

pain scores. No other genotypes differed significantly other than these. Regarding 

phenotype, the significance was the same as those in the genotype, along with the 

adjusted R-squared value. The C677T Heterozygous Mutation/A1298C Heterozygous 

Mutation phenotype was associated with lower maximum pain scores. 

Lastly, the genotypes and phenotypes for the gene SLCO1B1 were significant 

with maximum pain. Significance in the genotype was found (F(1,16) = 5.64, p=0.030). 

The model accounted for 26.08% of the variance in pain based on the R-squared value. 

Compared to the *1/*1 genotype, the *1/*5 genotype showed significantly lower 

maximum pain. The phenotype and the same R-squared value showed identical 

significance as the genotype model. The normal activity group reported higher maximum 

pain scores for phenotype than the intermediate activity group. The table summarizing 

genomic effects on maximum pain scores is in Table 16. 

3.4.3 Morphine Milligram Equivalents 

Three genes explicitly showed a relationship with MME dosages. These were CDA, 

CNR1, and CYP1A2 (Table 17). All were analyzed through the GLM. CDA showed a 

statistically significant association between phenotype and the calculated morphine 

dosage (F(1,16)=5.32, p=0.035). The adjusted sum of squares (Adj SS) for the phenotype 
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was 160839, indicating that the CDA phenotype could explain a substantial proportion of 

the variance in morphine dosage. The model accounted for 24.94% of the variance in the 

calculated morphine dosage (R-squared=24.94%). Upon adjusting for the number of 

predictors, this value slightly decreased to 20.24% (R- squared adjusted=20.24%). The 

rs532545 C Allele was associated with an increase in the calculated morphine dose by 

94.5 mg (p=0.035) relative to the rs532545 T Allele. 

In CNR1, there was statistical significance between phenotypes (F(1,16) = 5.61, p= 

0.031). The model accounted for approximately 25.98% of the variation in the calculated 

morphine based on the R-squared. The rs806368 non-TT genotype was associated with a 

decrease in the calculated morphine dosage by 102.3 mg (p = 0.031) compared to the 

rs806368 TT genotype. 

Lastly, CYP1A2 showed significance in the phenotype on the calculated morphine 

dose (F(1,16) = 4.68, p = 0.046). The model accounted for 22.61% of the variance in the 

calculated morphine dosage (R-squared = 22.61%). The high-inducibility metabolizer 

phenotype was associated with a 95.5-mg reduction in the calculated morphine dose (p = 

0.046) compared to normal metabolizers. The genomic effects of these three genes on 

MME are detailed in Table 18. 

3.4.4 Palliative Performance Scale 

In terms of PPS, the GLM demonstrated that several genes showed significance in 

this area. These were CYP4F2, HLA-B, NOS1AP, and UGT2B15 (Table 19). Only 

CYP4F2 and HLA-B were significant in terms of both genotype and phenotype. Table 20 

summarizes the association between genomic data and PPS% in its entirety. 

For CYP4F2, in terms of genotype, a significant association was found between 
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them (F(2,15) = 4.56, p = 0.028). The R-squared showed that this model could explain 

37.80% of the variance in PPS. Regarding specific genotypes, *1/*1 and *1/*3 genotypes 

associated with lower PPS% compared to the *3/*3 genotype. Regarding phenotype, the 

GLM also indicated significance (F(2,15) = 4.56, p = 0.028). Poor metabolizers showed a 

higher PPS% than those with other phenotypes. 

In HLA-B, genotype, and phenotype exhibited the same significance (F(2,15) = 

6.17, p = 0.011). The R-squared explains 45.12% of the variance in the GLM. However, 

the model was not robust enough to indicate specific phenotypes and genotypes and their 

association with PPS%. NOS1AP was the most complex model, with seven phenotypes. It 

was significant overall (F(6,11) = 3.73, p = 0.028), with the R-squared value explaining 

67.07% of the variance in PPS%. Despite the many phenotypes analyzed, the only one 

significantly associated with PPS% was the rs10494366 TT genotype/rs10800397 T 

Allele Carrier/rs10919035 T Allele Carrier. 

Lastly, the UGT2B15 genotype was significantly associated with PPS% (F(2,15)= 

6.64, p = 0.009), explaining 46.95% of the variance based on the R-squared. The *1/*2 

genotype was associated with a significantly higher PPS% compared to the *1/*1 

genotype. 
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Table 3: Patient Demographics 

Gender Count Percentage Age Count Percentage Ethnicity Count Percentage 
F 7 38.89% 37 1 5.56% African American 5 27.78% 
M 11 61.11% 46 1 5.56% Asian 1 5.56% 
   50 2 11.11% Hispanic 5 27.78% 
   54 1 5.56% Caucasian 7 38.89% 
   55 1 5.56%    
   60 1 5.56%    
   64 5 27.78%    
   68 1 5.56%    
   75 1 5.56%    
   77 1 5.56%    
   78 1 5.56%    
   80 1 5.56%    
   84 1 5.56%    

N = 18 100% N = 18 100% N = 18 100% 
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Table 4: Chronic Conditions in Cohort 

Original Condition Count Percent 
Alcoholic Liver Cirrhosis 1 5.56% 
Cervical Cancer 1 5.56% 
Colon Cancer 2 11.11% 
COPD 5 27.78% 
COPD/HIV 1 5.56% 
End stage CHF 1 5.56% 
Hepatitis C/Fibrosis of Lung 1 5.56% 
Hepatitis C/HIV 1 5.56% 
Lung Cancer 2 11.11% 
Metastatic Adenocarcinoma of the Tongue 1 5.56% 
Pancreatic Cancer 1 5.56% 
Prostate Cancer 1 5.56% 

N = 18 100% 
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Morphine milligram equivalents were calculated using Figure 4 

Table 5: Morphine Milligram Equivalents 

MME (mg) Patients Percent 
20 1 5.56% 
30 3 16.67% 

37.5 1 5.56% 
60 1 5.56% 
75 1 5.56% 
91 1 5.56% 
115 1 5.56% 
120 2 11.11% 
135 1 5.56% 
180 1 5.56% 
225 1 5.56% 
505 1 5.56% 
525 1 5.56% 
540 2 11.11% 
N= 18 100% 
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Table 6: Descriptive Statistics – Main Variables 

Variable Mean SEM StDev Var SS Min Max Med Range Mode MSSD 
PPS% 42.22 1.73 7.32 53.59 33000 30 60 40 30 40 35.29 
Av.Pain 5.83 0.51 2.18 4.74 693 2 10 6 8 5, 6, 7 4.94 
Max pain 7.67 0.58 2.45 6 1160 2 10 8 8 8 6.94 
MME 187.70 45.90 194.80 37942 1279 20 540 117.5 520 30 45217 

PPS% = palliative performance scale as percentage, MME = morphine 
milligram equivalents in mg, SEM = standard error of the mean, StDev = 
standard deviation, var = variance, SS = sum of squares, Med = median, 
MSSD = mean of the squared successive differences 
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SEM = standard error of the mean, StDev = standard deviation, var = 
variance, SS = sum of squares, Med = median, Rng=Range, MSSD = mean of 
the squared successive differences 

Table 7: Descriptive Statistics – Opioid Side Effects 
Variable Mean SEM StDev Var SS Min Max Med Rng Mode MSSD 
Nausea 2.17 0.72 3.07 9.44 245 0 10 1 10 0 12.97 
Fatigue 2.78 0.65 2.76 7.60 268 0 9 2 9 0 8.21 
Constipation 4.22 0.87 3.69 13.60 552 0 10 3.5 10 1 11.06 
Itching 2.00 0.76 3.22 10.35 248 0 10 1 10 0 9.12 
Dry mouth 4.78 0.95 4.04 16.30 688 0 10 5 10 0 11.59 
Abd. Pain 3.39 0.88 3.74 14.02 445 0 10 2 10 0 9.82 
Sweating 1.11 0.38 1.61 2.58 66 0 5 1 5 0 2.53 
Headache 2.94 0.84 3.57 12.76 373 0 10 1 10 0 15.59 
Urine Retention 3.06 0.81 3.44 11.82 369 0 10 1 10 0 7.44 
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Table 8: Descriptive Statistics – Medication Interactions 

Variable  Mean SEM StDev Var SS Min Max Rng Mode MSSD 
Possible Interactions 0.89 0.27 1.13 1.28 36 0 4 4 0 1.35 
Serious Interactions 0.28 0.11 0.46 0.21 5 0 1 1 0 0.27 
Non-Interacting Drugs 2.67 0.31 1.33 1.77 158 0 5 5 3 1.56 
Interactions with Opioids 1.11 0.30 1.28 1.63 50 0 5 5 1 1.74 
Total Number of Drugs 3.17 0.40 1.69 2.85 229 0 7 7 4 2.06 

SEM = standard error of the mean, StDev = standard deviation, Var = 
variance, Rng = range, SS = sum of squares, MSSD = mean of the squared 
successive differences 
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DF = degrees of freedom, SS = sum of squares, MS = mean square, F = f-value, 
P = p value 

Table 9: Regression Analysis – Age vs MME 
Source DF SS MS F P 
Regression 1 187145 187145 6.74      0.021 
Error 16 457866 28617   
Total 17 645012    
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Figure 7: Fitted Line Plot – Age vs. MME. The graph here shows the 
regression fitted line, which shows the negative relation between Age and 
Calculated Morphine Dose. The adjusted R-squared is 24.6% mean that this 
percent of variation in the dependent variable (Cal. Morphine Dose) is 
explained by the independent variable (Age) 
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DF = degrees of freedom, Adj SS = adjusted sum of squares, Adj MS = 
adjusted mean square, F = f-value, P = p value, S = root mean square error, 
R2 (Adj) = adjusted R2 

Table 10: Significant Morphine Side Effects Based on Demographic Information 

Variable Factor DF Adj SS Adj MS F P S R2 R2 (Adj) 
Constipation Gender 1 79.53 79.53 8.39 0.011 3.08 34.41% 30.31% 
Dry mouth Gender 1 89.40 89.40 7.62 0.014 3.43 32.26% 28.03% 
Abd.pain Gender 1 69.78 69.78 6.63 0.020 3.25 29.29% 24.87% 
Urine Retention Gender 1 72.50 72.50 9.03 0.008 2.83 36.08% 32.09% 
Dry mouth Ethnicity 3 139.90 46.62 4.75 0.017 3.13 50.47% 39.85% 
Sweating Age 12 42.08 3.51 10.31 0.009 0.58 96.12% 86.80% 
Itching Age 12 162.30 13.53 4.94 0.045 1.66 92.22% 73.53% 
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Table 11: MME vs. Opioid Side Effects 

Variable DF Adj SS Adj MS F P S R2 R2 (Adj) 
Dry mouth 13 227.94 17.53 1.43 0.40 3.51 82.26% 24.59% 
Abd. pain 13 164.28 12.64 0.68 0.73 4.30 68.94% 0.00% 
Sweating 13 26.61 2.05 0.48 0.86 2.07 60.79% 0.00% 
Nausea 13 107.33 8.26 0.62 0.77 3.65 66.87% 0.00% 
Fatigue 13 93.94 7.23 0.82 0.65 2.97 72.76% 0.00% 
Constipation 13 180.61 13.89 1.10 0.51 3.55 78.15% 7.13% 

MME = morphine milligram equivalents, DF = degrees of freedom, Adj SS = 
adjusted sum of squares, Adj MS = adjusted mean square, F = f-value, P = p 
value, S = root mean square error, R2 (Adj) = adjusted R2 
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Table 12: IFNL3 – Ethnicity and Phenotype 
Ethnicity DF Adj SS Adj MS F P S R2 R2 (Adj) 
Caucasian 1 1.00 1.00 4.90 0.042 0.45  23.44% 18.66% 
African American 1 1.74 1.74 14.81 0.001 0.34  48.08% 44.83% 
 

DF = degrees of freedom, Adj SS = adjusted sum of squares, Adj MS = 
adjusted mean square, F = f-value, P = p value, S = root mean square error, 
R2 (Adj) = adjusted R2 
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Table 13: Average Pain vs. Genomic Data 

Gene Variable DF Adj SS Adj MS F P S R2 R2 (Adj) 
AGTR1 Genotype 1 28.90 28.90 8.96 0.009 1.80 35.90% 31.89% 
AGTR1 Phenotype 1 28.90 28.90 8.96 0.009 1.80 35.90% 31.89% 
HTR2A Genotype 2 29.07 14.53 4.24 0.035 1.85 36.11% 27.59% 
SLCO1B1 Genotype 1 18.24 18.24 4.69 0.046 1.97 22.66% 17.82% 
SLCO1B1 Phenotype 1 18.24 18.24 4.69 0.046 1.97 22.66% 17.82% 
UGT2B15 Genotype 2 32.92 16.46 5.19 0.019 1.78 40.89% 33.01% 
UGT2B15 Phenotype 1 30.04 30.04 9.52 0.007 1.78 37.31% 33.39% 

DF = degrees of freedom, Adj SS = adjusted sum of squares, Adj MS = 
adjusted mean square, F = f-value, P = p value, S = root mean square error, 
R2 (Adj) = adjusted R2 
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Table 14: Average Pain Genomic Summary 

Gene Factor Polymorphism Effect P 
AGTR Genotype *WT/c.86A>C +1.70 0.009 
 Phenotype rs5186 AA genotype -1.70 0.009 
HTR2A Genotype WT/c.614-2211T>C -2.01 0.011 
SLCO1B1 Genotype *1/*1 +1.03 0.046 
 Phenotype Intermediate Activity -1.03 0.046 
UGT2B15 Genotype *1/*1 +2.03 0.019 
  *1/*2 -1.47 0.019 
 Phenotype rs1902023 AA genotype +1.55 0.007 

 
The effect refers to the outcome derived from the statistical analysis and its 
impact on the baseline pain score. A negative result signifies a reduction in 
pain level due to the specific polymorphism, whereas a positive value 
indicates an elevation in pain score. The P-value shows the statistical 
significance of each effect. 
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DF = degrees of freedom, Adj SS = adjusted sum of squares, Adj MS = 
adjusted mean square, F = f-value, P = p value, S = root mean square error, 
R2 (Adj) = adjusted R2 

Table 15: Max Pain vs. Genomic Data 

Gene Factor DF Adj SS Adj MS F P S R2 R2 (Adj) 
COMT Phenotype 1 24.14 24.14 4.96 0.041 2.21 23.67% 18.90% 
CYP1A2 Genotype 4 73.47 18.37 8.37 0.001 1.48 72.03% 63.42% 
CYP1A2 Phenotype 1 25.00 25.00 5.19 0.037 2.19 24.51% 19.79% 
CYP2B6 Genotype 3 42.67 14.22 3.36 0.050 2.06 41.83% 29.37% 
CYP2B6 Phenotype 3 42.67 14.22 3.36 0.050 2.06 41.83% 29.37% 
DRD1 Genotype 2 38.12 19.06 4.48 0.030 2.06 37.37% 29.02% 
DRD1 Phenotype 1 34.00 34.00 8.00 0.012 2.06 33.33% 29.17% 
FAAH Genotype 2 36.19 18.09 4.12 0.037 2.09 35.48% 26.87% 
FAAH Phenotype 2 36.19 18.09 4.12 0.037 2.09 35.48% 26.87% 
MTHFR Genotype 5 65.63 13.13 4.33 0.017 1.74 64.35% 49.49% 
MTHFR Phenotype 5 65.63 13.13 4.33 0.017 1.74 64.35% 49.49% 
SLCO1B1 Genotype 1 26.60 26.60 5.64 0.030 2.17 26.08% 21.46% 
SLCO1B1 Phenotype 1 26.60 26.60 5.64 0.030 2.17 26.08% 21.46% 
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The effect refers to the outcome derived from the statistical analysis and its 
impact on the baseline pain score. A negative result signifies a reduction in 
pain level due to the specific polymorphism, whereas a positive value 
indicates an elevation in pain score. The P-value shows the statistical 
significance of each effect. 

Table 16: Max Pain Genomic Summary 

Gene Factor Polymorphism Effect P 
COMT Phenotype MET Homozygous -1.39 0.041 
CYP1A2 Genotype *1A/*1A -2.75 0.004 
  *1C/*1F/*1F +1.65 0.027 
 Phenotype High Inducibility Metabolizer +1.25 0.037 
CYP2B6 Genotype A785G/A785G/G516T -4.00 0.026 
  A785G/A785G/G516T/G516T +3.00 0.029 
 Phenotype G516T Heterozygous/A785G Homozygous -4.00 0.026 

  
G516T Homozygous/A785G Homozygous +3.00 0.029 

DRD1 Genotype WT/c.-48G>A +2.57 0.013 
 Phenotype rs4532 CC genotype -3.00 0.012 
FAAH Genotype c.385C>A/c.385C>A -3.96 0.015 
  WT/c.385C>A +2.34 0.016 
 Phenotype rs324420 AA genotype -3.96 0.015 
  rs324420 CA genotype +2.34 0.016 
MTHFR Genotype 

Phenotype 
C677T/A1298C 
C677T Heterozygous Mutation/ 
A1298C Heterozygous Mutation 

-4.99 
 

-4.99 

0.001 
 
0.001 

SLCO1B Genotype *1/*1 +1.25 0.030 
 Phenotype Intermediate Activity -1.25 0.030 
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DF = degrees of freedom, Adj SS = adjusted sum of squares, Adj MS = 
adjusted mean square, F = f-value, P = p value, S = root mean square error, 
R2 (Adj) = adjusted R2 

Table 17: Morphine Milligram Equivalents vs. Genomic Data 

Gene Factor DF Adj SS Adj MS F P S R2 R2 (Adj) 
CDA Phenotype 1 162040 160839 5.32 0.035 173.96 24.94% 20.24% 
CNR1 Phenotype 1 160839 167554 5.61 0.031 172.46 25.98% 21.35% 
CYP1A2 Phenotype 1 162040 145860 4.68 0.046 176.63 22.61% 17.78% 
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The effect refers to the outcome derived from the statistical analysis and its 
impact on the calculated morphine dose. A negative result signifies an 
association with lower morphine levels due to the specific polymorphism, 
whereas a positive value indicates an elevation in the need for morphine. 
These are in milligram equivalents. The P-value shows the statistical 
significance of each effect. 

Table 18: Morphine Milligram Equivalents Genomic Summary 

Gene Factor Polymorphism Effect (mg) P 
CDA Phenotype         rs532545 C Allele +94.50 0.035 
CNR1 Phenotype rs806368 non-TT genotype -102.30 0.031 
CYP1A2 Phenotype High Inducibility Metabolizer -95.48 0.046 
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DF = degrees of freedom, Adj SS = adjusted sum of squares, Adj MS = 
adjusted mean square, F = f-value, P = p value, S = root mean square error, 
R2 (Adj) = adjusted R2 

 Table 19: Palliative Performance Scale vs. Genomic Data     
Gene Factor DF Adj SS  Adj MS F P S R2 R2(Adj) 
CYP4F2 Genotype 2 344.4 172.22 4.56 0.028 6.15  37.80% 29.51% 
CYP4F2 Phenotype 2 344.4 172.22 4.56 0.028 6.15  37.80% 29.51% 
HLA-B Genotype 2 411.1 205.56 6.17 0.011 5.77  45.12% 37.80% 
HLA-B Phenotype 2 411.1 205.56 6.17 0.011 5.77  45.12% 37.80% 
NOS1AP Phenotype 6 611.1 101.85 3.73 0.028 5.22  67.07% 49.11% 
UGT2B15 Genotype 2 427.8 213.89 6.64 0.009 5.68  46.95% 39.88% 
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The effect refers to the outcome derived from the statistical analysis and its impact 
on the PPS%. A negative result signifies a functional decline due to the specific 
polymorphism, whereas a positive value indicates an elevation function. These are 
in percentages. The P- value shows the statistical significance of each effect. 

Table 20: PPS% Genomic Summary 

Gene Factor Polymorphism Effect P 
CYP4F2 Genotype *1/*1 -5.56 0.045 

  *1/*3 -7.22 0.021 
 Phenotype Normal Metabolizer -5.56 0.045 
  Intermediate Metabolizer -7.22 0.021 

HLA-B Genotype WT/*5801 +8.33 0.016 
 Phenotype HLA-B*5801 Allele Carrier +8.33 0.016 
NOS1AP Genotype c.106-38510G>T/c.106-38510G>T/ +16.83 0.007 

  c.178-20044C>T/c.178-13122C>T   
  c.178-20044C>T/c.178-13122C>T -9.83 0.011 
 Phenotype rs10494366 GG genotype/ 

rs10800397 T Allele Carrier/ 
rs10919035 T Allele Carrier 

-10.24 0.006 

UGT2B15 Genotype *1/*2 +6.11 0.004 
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CHAPTER 4. DISCCUSION 
 

This study has made significant strides in understanding the intricate relationship 

between genetic variations and the efficacy of opioid therapy in the context of hospice 

and palliative care. Specifically, we identified several single nucleotide polymorphisms 

(SNPs) and corresponding genes that may influence an individual's response to opioids, 

including those potentially linked to opioid resistance. These findings are especially 

noteworthy given the limited application of pharmacogenomics (PGx) techniques in 

hospice settings. 

The potential clinical implications of these results are manifold. For example, 

identifying genetic markers associated with opioid resistance could enable personalized 

treatment strategies, reducing the trial-and-error approach commonly employed in pain 

management for hospice patients. This is a pressing need because this patient population 

often struggles with complex, severe pain resistant to standard opioid therapies. 

4.1 Implications of Non-Genomic Data 
 

Initially, non-genomic data was statistically analyzed. The only demographic factor 

correlated with the four significant variables (Average Pain, Maximum Pain, MME, and 

PSS%) was age and MME. Age was a predictive factor for morphine dosing. Age 

negatively impacted morphine dosage with a coefficient of -8.20 (p=0.021). The linear 

regression for age implies that for each year of age, the calculated morphine dosage 

decreases by 8.20 mg, holding all other factors constant. While it may seem 

counterintuitive, there is a fear of addiction among long-term hospice and palliative care 

patients on opioid therapy99. A possible explanation for the gradual tapering of opioid 

therapy based on age could be addiction-related worries. Another possible explanation is 
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that hospice and palliative care patients may be unable to communicate their pain 

management needs as their disease progresses and they age100. 

Opioid-related side effects in terms of demographics were also analyzed. We 

found that gender significantly influences the severity of specific opioid side effects— 

specifically constipation, dry mouth, abdominal pain, and urinary retention. Two side 

effects, itching and sweating, were linked to age. Older patients experienced a greater 

degree of itching and sweating than younger patients. However, we cannot definitively 

say that opioids caused these factors in these patients, as the MME did not significantly 

impact any opioid side effects documented by the NOSE. 

The variation in side effects in males and females could be related to sex 

differences, but there are too many confounding variables for this to be a definitive 

explanation. Patients might have secondary conditions we were not privy to that 

influence these results. These conditions might be related to secondary diseases, post- 

operative symptoms, or a condition that has gone undiagnosed. These might also be the 

long-term effects of substance abuse or drugs they were previously on. These reasons are 

purely speculative, and the data afford no definitive explanation. 

Our results are in line with previous research regarding itching and age. The high 

prevalence of these symptoms in aging patients is due to the physiology of aging skin: 

poor hydration, impaired barrier function of the skin, and alterations in kidney 

function101. For sweating, the causes could be varied. These can be a symptom of pain or 

other medications patients are taking. Sweating can also result from psychological 

conditions such as depression and anxiety102. 

In the genomic analysis, we found 24 out of the 50 analyzed genes to be 
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significant. Regarding demographics, only one gene, interferon lambda 3 (IFNL3), 

showed significance concerning ethnicity. This gene's SNP is crucial in predicting the 

treatment of hepatitis C with interferon and ribavirin and plays a vital role in antiviral 

host defense103. An important point to note is that the versions of IFNL3 differ based on 

ethnicity. The favorable variant is most common among Caucasians and least common 

among African Americans. A large majority of African Americans possess the non-

favorable variant104. Our results follow this, with 80% of Caucasians possessing the 

favorable genotype and 100% of African Americans possessing the non-favorable 

genotype. These statistics align with previous research and demonstrate the validity of 

our methodology. 

4.2 Main Variables and Significant Relationships 
 
We based the four main variables in this study on our hypotheses and PGx 

relationships. They were average pain, maximum pain, MME, and PPS%. These were the 

primary variables due to their relationship with opioids, pain, and clinical outcomes. 

Along with maximum pain, our analyses found that several genes also influenced a 

patient's average pain, which we defined as the typical pain over a 24-hour period. These 

were AGTR1, HTR2A, SLCO1B1 and UGT2B15. We found a significant correlation 

between the angiotensin II receptor type I (AGTR1) phenotype, genotype, and maximum 

pain. AGTR1 is accountable for synthesizing a protein identified as the angiotensin II 

receptor type 1 (AT1 receptor). This protein plays a crucial role in the renin-angiotensin 

system, which is pivotal for regulating blood pressure and the equilibrium of fluids and 

electrolytes within the organism104.  

In terms of genotype, individuals with the heterozygous WT (WT/c.*86A>C) 
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genotype experienced higher average pain compared to those with the homozygous WT 

(WT/WT) genotype. For phenotype, results indicate higher average pain for the rs5186 

AC variant than the AA variant. Most of the PGx research on AGTR1 is based on the 

cardiovascular system, and no robust evidence is related to pain or opioids. However, 

AGTR1 polymorphisms are responsible for increased inflammation105. These 

polymorphisms may explain why patients experience more significant pain with the 

genotype and phenotype variants. 

The serotonin receptor 2A (HTR2A) demonstrated significance in genotype but not 

phenotype in relation to average pain. HTR2A encodes for one of the receptors for 

serotonin. Animal models have shown that the HTR2A receptor mediates pain processing 

in the spinal cord by regulating glutamatergic activity106. Our results showed that HTR2A 

polymorphisms had higher post-operative analgesic requirements107. Our model was not 

robust enough to establish and could not determine if the HTR2A genotype increased or 

decreased average pain. However, due to the significance of the association and previous 

literature associating HTR2A with pain, this gene would benefit from PGx studies related 

to analgesics. More focused research would further strengthen the association between 

HTR2A and pain. 

The following gene that was significant for average pain was lute carrier organic 

anion transporter family member 1B1 (SLCO1B1). SLCO1B produces a protein called 

organic anion transporting polypeptide, 1B1. This protein is found in hepatocytes and 

transports compounds from the blood into the liver to be cleared108. SLCO1B was 

significant in both genotype and phenotype. Specifically, the SLCO1B1*1 genotype is 

associated with higher average pain scores than other genotypes. Currently, there are no 
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PGx relationships with analgesics. SLCO1B1 and genotype. One reason for this might be 

that other genotypes have reduced function and this may increase the systemic circulation 

of some opioids since SLCO1B1 functions in the liver. In terms of phenotype, those with 

the intermediate activity phenotype experienced lower-than- average pain. As there are 

no PGx relationships between analgesia and SLCO1B1, it is difficult to determine how 

these relationships affect one another. The low explanation of variance within the model 

indicates other factors at play for both the genotype and phenotype. 

Lastly, UDP glucuronosyltransferase family 2 member B15 (UGT2B15) had both 

genotype and phenotype have a significant association with average pain. The UGT2B15 

gene is responsible for producing an enzyme involved in glucuronidation. This process, 

called a phase II metabolic reaction, converts lipophilic molecules into water-soluble 

substances that can be easily excreted. The UGT2B15 enzyme is primarily found in the 

liver, which plays a critical role in the metabolism of various substrates, including 

therapeutic drugs like benzodiazepines109. 

In terms of genotype, based on the regression equation, individuals with the *1/*1 

genotype reported the highest average pain, followed by the *2/*2 genotype and then the 

*1/*2 genotype. Most studies involving UGT2B15 relate to the metabolism of 

anxiolytics. In a study with lorazepam, clearance of the drug was lower in the *2/*2 

genotype than in the *1/*1 genotype 110. Since UGT2B15 is produced primarily in the 

liver and performs glucuronidation, it may be related to opioid metabolism. A possible 

reason for the *1/*1 genotype experiencing more pain than the homozygous and 

heterozygous genotypes is that opioids and their metabolites are cleared faster from their 

body than the *2/*2. This polymorphism would alter the amount of drugs a patient would 
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need. However, this is only a possible explanation based on a different drug class. More 

research is needed to investigate this relationship. 

For phenotype, the rs1902023 AA variant significantly contributes to pain in 

individuals with this variant than without it. This corresponds with the above results as 

the *1/*1 is the genotype for the rs1902023 AA phenotype. Much like genotype, there is 

little literature on rs1902023 AA and pain. The closest evidence was that those with the 

AA genotype are associated with a more significant metabolism of acetaminophen. 

However, that study was in healthy patients. Increased clearance of acetaminophen may 

be contributing to the pain score. More research is needed to ascertain this relationship109. 

Maximum pain was the worst pain the patient experienced in the past 24 hours. 

The genes significantly associated with maximum pain were COMT, CYP1A2, CYP2B6, 

DRD1, FAAH, MTHFR, and SLCO1B1. Out of all the genes in the study, only SLCO1B1 

was involved in both maximum and average pain. Catechol-O-methyltransferase 

(COMT) is a prominent gene in pharmacogenomics. Genetic alterations within COMT 

have been associated with mental health conditions such as schizophrenia, pain 

perception mediated by opioid receptors, and the development of breast cancer. 

The COMT enzyme facilitates the transmission of a methyl group from S- 

adenosyl-l-methionine (SAM) to a hydroxyl group on the catechol substrate. This 

reaction requires the presence of magnesium ions111. We found a positive association 

between COMT's phenotypes and pain. Specifically, we predict that individuals with the 

MET Homozygous phenotype will have a maximum pain score 1.393 points lower than 

Non-MET Homozygous individuals. This finding follows throughout the literature. A 

polymorphism replaces a methionine (Met) with a valine (Val) at codon 158 in COMT. 
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We have observed that subjects with a Met/Met genotype exhibit low COMT activity112. 

This polymorphism has led to an increase in pain response. Many studies have confirmed 

that this homozygous genotype is associated with increased pain from fibromyalgia to 

the transition from acute to chronic lower back pain113. 

Regarding opioids, patients with the homozygous Met substitution had a higher 

pain sensitivity and more extended amounts of chronic pain than other polymorphisms. 

Researchers believe this mechanism impacts enkephalin, an endogenous opioid capable 

of reciprocally regulating MOP expression114. Based on the literature, we have observed 

that individuals with a homozygous Non-Methionine polymorphism may experience 

increased pain115. 

CYP1A2 is part of the cytochrome P-450 (CYP) enzyme family that plays a vital 

role in drug metabolism. Various CYP enzymes are responsible for the catalysis of 70- 

80% of all phase I reactions. However, the CYP1A2 isoform is only responsible for 

metabolizing 5% of drugs in the CYP family of enzymes116. 

CYP1A2 is not associated with opioids and is most commonly associated with 

antipsychotics and methylxanthines such as theophylline and caffeine. In our study, both 

genotype and phenotype affected maximum pain. Regarding genotype, we associated the 

*1A/*1F, *1C/*1F/*1F, and *1F/*1F genotypes (which are all classified as the high 

inducibility metabolizer phenotype) with increasing pain scores. We consider 

CYP1A2*1A to be the principal or 'wild-type’ genotype. We associate the *1F genotype 

with the ‘ultrarapid metabolizer’117. While not associated with opioids, it is associated 

with a faster caffeine metabolism. This genotype is also associated with a faster 

metabolism of clozapine118. The *1C allele is associated with decreased enzymatic 
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activity51. In our study, the *1F allele was present in all the groups with increasing pain 

scores. This polymorphism concerning pain scores is a new finding, as there have not 

been any associations with opioids or analgesics in the literature. Our group identified the 

ultra- rapid metabolizer allele in individuals who reported increased pain. Ultra-rapid 

metabolizers may suggest a pharmacogenetic reaction that requires further investigation. 

Adding to the evidence that ultra-rapid metabolizers in CYP1A2 contribute to maximum 

pain, we found that the normal metabolizer group reported lower maximum pain than the 

high inducibility metabolizer group. This finding reinforces the link between individuals 

with a high metabolism and increased pain levels. 

Another member of the CYP family was involved in increased pain, which was 

cytochrome P450 family 2 subfamily B member 6 (CYP2B6). CYP2B6 is one of the 

most highly polymorphic human members of the CYP family, with over 100 different 

SNPs119. CYP2B6 makes up about 3-6% of the total CYP in the liver and processes 

numerous drugs, including bupropion, ketamine, and propofol. It also can de-toxify and 

bioactivate several procarcinogens and environmental toxicants120. CYP2B6 was 

significant in both terms of genotype and phenotype. 

Regarding genotype, two were relevant: A785G/A785G/G516T for association 

with less pain than WT and A785G/A785G/G516T/G516T with more pain than WT. 

These CYP2B6*6 SNPs 785A>G (rs2279343) and 516G>T (rs3745274) were associated 

with high methadone clearance, a lower plasma concentration, and a lower concentration 

to dosage ratio of (S)-methadone121. Therefore, it makes sense that a patient that is 

homozygous for both of these polymorphisms clears opioids faster, leading to a need for 

more pain relief. 
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These factors align with the with phenotype: G516T Heterozygous/A785G 

Homozygous exhibits lower pain than G516T Homozygous/A785G Homozygous. Due to 

these findings, we must conduct more research to confirm this association conclusively. 

However, it does mark an indicator for possible clinical use. 

Dopamine Receptor D1 (DRD1) is the most abundant dopamine receptor in the 

CNS. DRD1 is a G-protein coupled receptor, which stimulates adenylyl cyclase. DRD1 

also activates cyclic-AMP protein kinases122. For our study, in terms of maximum pain, 

both genotype and phenotype were significant in average pain. 

Regarding genotype, the maximum pain level of those homozygous for the c.-

48G>A polymorphism was greater than that of the WT/WT. Furthermore, those 

heterozygous with the wild-type, WT/c.-48G>A, also experienced a higher maximum pain 

level. 

Regarding phenotype, analysis was between the rs4532 CC genotype and the non- 

CC genotype. We observed a significant association between the DRD1 phenotype and 

maximum pain, explaining approximately 33.33% of the variance in pain perception. 

Individuals with the rs4532 CC genotype reported lower maximum pain levels 

than those with the non-CC phenotype. However, our cohort contained only one patient 

with the rs4532 CC phenotype, corresponding to the homozygous wild-type genotype. 

In terms of opioids and other drugs, DRD1 is an integral part of reward-related 

processes, especially those in drug reward and conditioning123. DRD1 is implicated in 

addiction to drugs as well as engaging in high-risk behavior124. The SNP rs4532 was 

studied in chronically prescribed opioid patients in pain clinics125. The study focused on 

the Genetic Addiction Risk Test (GARS), which is clinically proven to be able to predict 
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vulnerability to pain using PGx125. The DRD1 rs4532 allele was the most frequently 

observed risk allele in the study cohort, with a presence in 87.60% of the participants. 

The prevalence of rs4532 made it the most prevalent allele among those tested125. 

In one study, there was an association with the SNP rs4532 in Han Chinese addicts from 

the rapidity of the first use of an opioid to addiction126. Another study found that rs4532 

could be associated with less pleasurable opioid responses after dependence127. The lack 

of a pleasurable response can explain why maximum pain scores were higher in those 

with this SNP since euphoria can mask pain. The high pain scores with this SNP could be 

because opioids in these patients do not provide the complete analgesic response, leading 

to more pain. PGx analysis could undoubtedly help these patients and modulate opioid 

dosing based on these findings. However, further investigation is needed to determine an 

exact treatment protocol and the reasoning for the higher pain scores. 

Next, we found that the genotype and phenotype of Fatty-acid amide hydrolase 1 

(FAAH) significantly influenced maximum pain. FAAH is vital in mammals, as it 

produces an enzyme that breaks down a group of signaling lipids known as fatty acid 

amides. These are naturally occurring within the body. Notably, these lipids include 

anandamide, an endogenous cannabinoid, and oleamide, which induces sleep. For 

genotype, the c.385C>A/c.385C>A polymorphism reported, on average less pain than 

those with the WT/WT genotype (WT). On the other hand, individuals with the 

WT/c.385C>A genotype experienced more pain than the WT/WT genotype. It makes 

logical sense that someone with the homozygous polymorphism will experience more 

intense pain relief than someone with the WT or heterozygous polymorphism. The 

c.385C>A substitution results in around a 50% cellular expression loss of FAAH due to 
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the reduced stability of the mutant protein 128. The mutant protein could result in reduced 

metabolism of endogenous endocannabinoids, such as anandamide. The endocannabinoid 

system is known to modulate pain129, and with these SNPs inactivating a large amount of 

FAAH, this could, in turn, increase pain relief. FAAH inhibitors also reduced anxiety in 

mice130, a psychological component of pain. 

In terms of phenotype, the results follow identically. The rs324420 CA and CC 

genotypes had higher maximum pain than the rs324420 AA variant. The results we 

discovered in the genotypic expression are consistent with this information. The 

homozygous AA variant lessens the metabolism of endogenous cannabinoids and boosts 

endocannabinoid activity. 

Another gene related to max pain is Methylenetetrahydrofolate reductase 

(MTHFR). This gene is responsible for producing an enzyme named 

methylenetetrahydrofolate reductase. This enzyme is essential in the metabolism of 

amino acids. It is crucial to note that MTHFR facilitates a chemical reaction that depends 

on the vitamin folate131. MTHFR assists in the conversion of folate into its primary form 

found in the blood. The gene also converts homocysteine to methionine132. 

Genotype and phenotype were associated with lower maximum pain scores: 

C677T/A1298C and C677T Heterozygous Mutation/A1298C Heterozygous Mutation 

genotype. This mutation reduces the activity of MTHFR by 35% in those who are 

heterozygous. This results in blood loss of folate and amino acid conversion133. 

Currently, with this variant, no relevant PGx relationship would explain a drop in pain. 

There have been studies with conflicting results on whether variants in MTHFR produce 

headaches or migraines134. Recent findings indicate that MTHFR variants occur more 
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frequently in opioid users than in the general population135. The literature does not 

establish any connections between MTHFR function and opioids. Without research, it is 

difficult to speculate what these pain scores represent inside our population. Further 

research is necessary into these MTHFR variants and associated pain in hospice and 

palliative care. 

Lastly, SLCO1B1 was significant for maximum pain, as it was for average pain. 

Both the genotype and phenotype were the same in terms of results. The SLCO1B1*1 

genotype is associated with higher maximum pain scores, and the Intermediate 

metabolizer phenotype was associated with lower maximum pain scores. The model’s r- 

squared was still low. For clinical data, there is evidence that variants with lower 

methotrexate clearance136. The clearance of opioids might be affected as it is a hepatic 

enzyme, but we need to conduct more research to confirm this. 

We found three genes significantly associated with MME: CDA, CNR1, and 

CYP1A2. The CDA gene's primary role is the recycling of free pyrimidines, salvaging 

them. CDA is one of several deaminases responsible for maintaining the cellular 

pyrimidine pool. The recycling activity of CDA within the pyrimidine salvage pathway is 

essential for DNA and RNA synthesis. The gene itself plays a role in the metabolism of 

the cancer drug cytarabine137. CDA can deaminate cytidine and deoxycytidine-based 

therapies. CDA overexpression is associated with lower chemotherapeutic side effects 

and resistance to chemotherapeutic treatment138. There is no literature on the relationship 

between CDA and morphine metabolism. However, our findings indicate that the 

rs532545 C allele was associated with a substantial increase in the calculated morphine 

dosage by 94.5 mg (p=0.035) compared to the rs532545 T allele. This finding highlights 
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the potential impact of genetic variation in the CDA gene on opioid dose requirements. 

This particular allele may alter the function or expression of the CDA enzyme, leading to 

changes in morphine metabolism or response. Our model presents predictive power (R-

squared predictive=5.00%) but is relatively low. There are still significant variations in 

morphine dosing that we have yet to consider. We need further research to strengthen the 

association between the rs532545 C allele and increased morphine dosage, as we have 

not yet explained why this is the case. 

The gene CNR1 is part of the endocannabinoid system in the central nervous 

system. Like opioid receptors, cannabinoid receptors are part of the guanine-nucleotide 

binding protein (G-protein) receptor family139. Significant cross-talk exists in the 

endogenous cannabinoid and opioid systems140. Due to this, there is evidence that CNR1 

plays a role in the addiction process, including opioid addiction141. Our study observed a 

statistically significant relationship between the CNR1 phenotypes and the calculated 

morphine dose (F(1,16)=5.61, p=0.031). The results indicate that alterations in CNR1 

genetics, particularly in rs806368 non-TT and TT genotypes, could impact the morphine 

needed. The non-TT genotype was associated with a decrease in the calculated morphine 

dosage by 102.3 mg (p=0.031) relative to the TT genotype. People who do not have the 

TT genotype may need lower doses of morphine to achieve the same pain-relieving 

effects. Recent studies have shown that both receptor types can produce antinociception, 

drowsiness, hypotension, motor depression, and drug reward/reinforcement when used 

agonists142. A possible mechanism may be interaction with the endocannabinoid system, 

increasing analgesic effects and thus decreasing the need for larger doses of opioids. 

CYP1A2 is part of the cytochrome P-450 (CYP) enzyme family essential to drug 
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metabolism. Various CYP enzymes are responsible for the catalysis of 70-80% of all 

phase I reactions. However, the CYP1A2 isoform is only responsible for metabolizing 

5% of drugs in the CYP family of enzymes116. CYP1A2 is not associated with opioids 

and is most commonly associated with antipsychotics and methylxanthines such as 

theophylline and caffeine. Our results associated the high inducibility metabolizer 

phenotype with a 95.5 mg reduction in the calculated morphine dose (p = 0.046) 

compared to normal metabolizers. While this may seem contradictory, several opioid 

drugs are pro-drugs. A few include oxycodone, codeine, and hydrocodone143. Calculating 

morphine equivalents, we combine these drugs into a singular value. Those with the high 

inducibility metabolizer phenotype may convert opioid pro-drugs into drugs quicker, 

increasing their analgesic effect and thus negating the need for higher doses of opioids. 

Lastly, PPS% was analyzed. Four genes were significantly associated with PPS%. 

These included CYP4F2, HLA-B, NOS1AP, and UGT2B15. Cytochrome P450 family 4 

subfamily F member 2 (CYP4F2), situated in the endoplasmic reticulum, initiates the 

breakdown and neutralization of leukotriene B4144. This is a potent inflammation inducer. 

CYP4F2 also plays a role in metabolizing fatty acids and vitamin E145. *1/*1 and *1/*3 

genotypes were associated with lower PPS% compared to the *3/*3 genotype. 

Individuals with a *3/*3 genotype may require less warfarin than those with other genetic 

variations, as the former may provide a protective effect 146. This genotype also appears 

to increase human exposure to vitamin K147. CYP4F2*3/*3 may relay a protective effect 

against bleeds and the low therapeutic index drug of warfarin, which many palliative and 

hospice patients must take. This may lead to an increase in PPS%, associated with higher 

survival and outcomes. In terms of phenotype, "Intermediate Metabolizer" and "Normal 
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Metabolizer" are associated with lower PPS% compared to the "Poor Metabolizer" 

phenotype in our study. Because of this, normal and intermediate metabolizers have 

worse patient outcomes than poor ones. The result of normal and intermediate 

metabolizers having poorer outcomes may have to do with the significance of warfarin 

dosing and the fact that CYP4F2 is related to increased vitamin K levels. There is also 

evidence that high levels of CYP4F2 promote lung cancer148, which may further impact 

PPS%. 

Major histocompatibility complex, class I, B (HLA-B) plays a critical role as it 

enables the immune system to differentiate between proteins produced by the body and 

those produced by external invaders like bacteria and viruses. HLA-B is responsible for 

creating a protein pivotal to the immune system's functioning149. Both the phenotype and 

genotype were associated with significance with PPS%. The WT/*5801 has a higher 

PPS% than that of the WT. Typically, the variant HLA-B*5801 is implicated in many 

adverse drug reactions, notably allopurinol150. The HLA-B*5801variant having better 

patient outcomes (increased PPS%) compared to the WT seems counterintuitive. The 

cohort under investigation also includes people with HIV, and this variant is responsible 

for hepatotoxicity during retroviral therapy151. Due to the many negative effects of the 

variant, it is unclear why there is an association with HLA-B*5801 and higher PPS%. 

Further investigation needs to be done, especially in the realm of this patient population 

with this variant. For phenotype, being an HLA-B5801 Allele Carrier also was associated 

with a higher PPS%, an identical result. 

Our analysis showed that the Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) 

gene is significantly associated with PPS%. The protein NOS1AP interacts with neuronal 
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nNOS in cytoplasm152. Specifically, rs10494366 GG genotype/rs10800397 T Allele 

Carrier/rs10919035 T Allele Carrier was associated with lower PPS%. This has to do 

with several factors. Individuals with a GG genotype at rs10494366 compared to 

individuals with the TT genotype at the same site, using glibenclamide, results in a lower 

efficacy of glucose reduction and higher mortality rates when using the same 

medication153. In addition, the SNP rs10800397 increased the incidence of drug-induced 

long QT syndrome154. Because of these factors, this variant likely results in lowered 

patient outcomes due to its effect on the heart and medications relating to it. 

Lastly, UGT2B15 was associated with PPS% and was also associated with 

average pain. In this case, we associate the '*1/2' variant with a higher PPS% than other 

variants. One study associated the UGT2B151/*2 variant with poorer outcomes when 

patients received tamoxifen for breast cancer155. This could be responsible for the 

degenerating palliative performance that our model predicts. 

4.3 Clinical Implications 
 

This study has significant implications for clinical practice and has the potential to 

change the traditional one-size-fits-all approach to pain management. Integrating 

genomic analyses with clinical practice can lead to personalized pain management based 

on the patient's genetic makeup. Genomic analysis has the potential to improve the 

effectiveness of opioid dosing. The unique variations in each patient can be better 

visualized through a matrix plot (Figure 8) showing the extreme variations in each 

patient. The visualization of these baseline scores helps put the genomic data in 

perspective. 

To assess the clinical implications of this study, we combined the PGx results across 
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the four variables: average pain, maximum pain, Morphine Milligram Equivalents 

(MME), and Palliative Performance Scale (PPS%). The additive genomic effects were to 

provide a general overview of the study and better enable clinical analysis. 

Table 21 displays the overall genomic effect on average pain for each individual 

patient. Patient 1 demonstrated a negative overall effect on average pain of -2.73. Patient 

1 possessed a negative score despite having a baseline average pain score of 4. These 

scores might suggest a potential resistance to pain, which may warrant a potential lower 

dose of opioids. Conversely, Patient 6 exhibited the highest recorded pain score of 10, 

along with the highest overall genomic effect on average pain, which was +6.31. This 

patient's high genomic score suggests a heightened sensitivity to pain, necessitating a 

more nuanced approach to pain management. 

Regarding maximum pain, the differences in patients are equally revealing, 

depending on the sum of genomic effects (Table 22). Patient 16 presents with a baseline 

maximum pain score of 2 and possesses a significant genomic effect of -26.29 on 

maximum pain. The genomic effect was less pronounced on average pain at -4.74, but it 

still was the second-highest reduction in average pain for all patients. Patient 16 also 

presented with an average pain score of 2. These negative scores indicate a genetic 

predisposition towards pain resistance or pain tolerance and may require a less aggressive 

opioid dosing regimen. In contrast, patient 4 and patient 6 had genomic effects in the 

double digits, +14.83 and +13.18, respectively. They also both had maximal pain scores 

of 10. Patients 4 and 6 possessed high average pain scores as well. 

Regarding significant differences between average pain and maximum pain and 

genomic effects, patient 11 was the most stark. For average pain, their overall genomic 
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effect was -4.15, and their average pain baseline was 3. For maximum pain, patient 11's 

genomic effect was +4.00, and their baseline maximum pain 10. These variations 

demonstrate the stark complexities of pain management. This patient might have a 

genomic effect that amplifies the feeling of acute or peak pain and might take more 

aggressive pain management to maintain comfort and function during these episodes. 

MME also highlights the crucial observations genomically as well (Table 23). 

Patient 16, who had high pain resistance on both average pain and maximum pain, was 

also associated with a lower morphine dose of -102.3 mg. Their baseline morphine dose 

was also low at only 30 mg. In contrast, patient 8, with an overall genomic effect on 

morphine of +94.50 mg and a high opioid requirement of 540 mg, might have a genetic 

makeup that leads to rapid metabolism or reduced opioid sensitivity. Patient 8 might 

require even higher opioid doses outside the normal range. Patient 8's pain scores provide 

insight into the reasoning. Their average pain score was 7, and their maximum score was 

8. This result challenges the idea of what is adequate in pain management. Similarly, 

patient 11 possessed a genomic effect of morphine as +94.50 mg, along with an overall 

MME of 525 mg. While this might be adequate for average pain since their baseline was a 

3, it might require more aggressive treatment for incidents of acute pain since their 

maximal pain score was an 8. 

The effect on morphine dose can also reveal those patients who are not getting 

adequate treatment. Ineffective treatment is especially stark in terms of patient 3. They 

have both high average and maximum pain, with scores of 8 and 10. Their morphine dose 

is 60 mg. While their overall genomic effect indicates they might require a lower 

morphine dose at -95.48 mg, they still possess high average and maximum pain scores. 
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The overall genomic effect on maximum pain in terms of patient 3 is pronounced, 

being +8.83. Despite requiring less morphine, this is counteracted by the susceptibility to 

high acute pain, as well as still possessing a high average pain score. This genomic 

information would allow for a better and more specified treatment regimen since the 

current amount of opioids is not enough to counter the effects of the pain they are 

experiencing. 

While essentially different than pain, it is essential to look at a patient's functional 

status (Table 24). The PPS% of patient 1, with a baseline of 30% and a considerable 

negative genomic effect of -31.19%, might experience a more pronounced decline in their 

functional status. This insight could prompt earlier interventions tailored to the patient's 

needs to maintain the best possible quality of life. Comparatively, patient 17, who 

exhibits a significant positive genomic effect of +39.60% with a baseline of 60%, may 

maintain a better functional status than expected despite significant disease progression. 

Understanding such genomic influences can help anticipate the patient's trajectory, 

guiding decisions about resource allocation and the intensity of supportive care services. 

The variation in PPS% and genomic effects merits further study in this area outside of the 

context of opioid and pain associations. 

This study's approach merits integrating genomic analysis into the clinical 

practice, as with this small sample size, there is substantial variability. The one-size-fits- 

all pain management approach is suboptimal. The incorporation of genomic data into 

clinical practice can highlight patient differences and offer insights as to how pain can be 

managed more effectively with less risk. 
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4.4 Limitations 
 

While the study shows significance, it is only the first step, as we must refine 

methodologies. As mentioned in the introduction, hospice and palliative care are 

complicated to study. Our patient population is relatively small. Swabs were typically 

taken instead of blood samples due to the nature of the frailty of the patients and the 

constant administering of medications, leaving them with few extraction sites for blood. 

Drawing blood from this patient cohort requires a skilled phlebotomist. 

In addition to that, it is difficult to have an opioid naïve control group in this 

population. Frequently, these patients are at the end of their lives and have been taking 

opioids for an extended period. This makes it challenging to compare epigenetic factors 

from a naïve population to one that has taken opioids for an extended period. There is a 

lack of a robust control group due to this. 

There is a large signal-to-noise ratio. This is because are a vast number of factors 

that comprise PGx, and hospice and palliative patients may obscure results. This is 

because they have multiple chronic conditions, are on many medications, and may have 

experienced different treatment regimens. 

In terms of medical records, they are challenging to track down before they enter 

the hospice and palliative care environment. Patients might have visited multiple 

physicians or received treatment in different hospitals, making locating records 

challenging. This might mean there are confounding variables that we cannot account for 

because we do not know of them. Similarly, with medical records, some opioid doses 

were given 'as needed,' which means whenever the patient wanted them. If we do not 

meticulously keep these records, it hampers our ability to calculate morphine dosages 
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accurately. 

Combining genotypic and phenotypic results provides its limitations. While it is 

necessary to understand the interplay of genomic factors on pain and opioid dosing, 

several difficulties arise. The analysis treated all values equally when adding genotype 

and phenotype together. Equal treatment among genotype and phenotype is generally not 

the case, as one genotype or phenotype will have a more significant effect than another, 

influencing overall genomic scores. There is also the fact that there may be confounding 

variables influencing these scores beyond what we can see. 

Lastly, while we did show significance in nearly half of our genes of interest, several 

more were just shy of being significant. This is because our sample size consisted of only 

18 individuals. A more significant number of subjects would allow for even more robust 

evidence for the associations that we have discovered. 

4.5 Conclusions and Future Research 
 

In conclusion, this study provides new insights into the complex hospice and 

palliative care management field. We discovered that SNPs in multiple genes, such as 

CYP1A2, HTR2A, CNR1, and others, can significantly influence this patient cohort's 

average pain, maximum pain, MME, and PPS%. We also discovered novel genes not 

previously associated with opioid or pain response: AGTR1, SLCO1B1, and UGT2B15. 

These findings indicate a possible path to the genetic basis of pain and response to opioid 

medications. The associations we discovered between specific genotypes and phenotypes 

and morphine dosing suggest the potential for personalized opioid treatment plans based 

on a patient's genetic profile. Such as, variants in CNR1 may require different doses for 

effective pain management. This further validates the use of PGx in the association 
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between opioids, pain, and patient outcomes. 

Additional research is required to validate the clinical utility of these genomic 

profiles and establish strong, causative evidence-based linkages for opioid dosing 

regimens and pain management. Future studies could eliminate variables like numerous 

health conditions and focus on cancer since cancer induces epigenetic changes. A larger 

patient cohort would be valuable as well. 

One developing area is PGx reporting phone applications that immediately show 

patients their results once the report is complete. With more evidence, these applications 

can also be included in the clinic, clearing up confusion and stigma with opioid 

prescribing. They could be linked to patient databases and change prescriptions in real 

time. These reports could also be broken down into simpler terms so caregivers can 

respond appropriately to accurate information and not be confused or afraid they will 

harm their loved ones with inaccurate dosing. 

This study offers proof of concept to allow for a stepping stone to discovering 

these complex gene-phenotype and gene-drug interactions. Discovering these PGx 

markers through comprehensive study and analysis could lead to more precise and 

effective pain management. By implementing this approach, errors in opioid dosing and 

pain management will significantly decrease. Moreover, clinicians can access 

personalized patient profiles for accurate dosing. Further and most importantly, 

increasing the quality of life for those who need it the most. 
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Figure 8: Matrix Plot for All Patients with All Variables. This matrix plot 
illustrates the distribution and relationship of average pain, maximum pain, Morphine 
Milligram Equivalent (MME), and Palliative Performance Scale (PPS%) across our 
patient cohort. Each row represents a variable, while the numbered dot represents an 
individual patient, identified by number. The x-axis on the chart refers to each patient, 
while the y-values indicate a specific patient. 
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Table 21: Overall Genomic Effect on Average Pain 

Patient Overall Effect Av.Pain Baseline 
1 -2.73 4 
2 +4.25 9 
3 -2.68 8 
4 -0.67 6 
5 -6.21 3 
6 +6.31 10 
7 -0.67 7 
8 -0.67 7 
9 -4.20 5 
10 -2.14 6 
11 -4.15 3 
12 +2.91 8 
13 +1.26 7 
14 -2.14 5 
15 +0.90 6 
16 -4.74 2 
17 -4.20 5 
18 -6.21 4 

This table represents the combined genomic effect on average pain across all 
genes, genotypes, and phenotypes. A positive score indicates a predisposition 
for higher pain levels, while a negative score indicates a predisposition to 
lower pain levels and pain tolerance. 
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Table 22: Overall Genomic Effect on 

Maximum Pain 
Patient Overall Effect Max Pain Baseline 

1 +4.68 4 
2 +7.43 9 
3 +8.83 10 
4 +14.83 10 
5 -23.37 3 
6 +13.18 10 
7 +4.15 8 
8 +1.25 8 
9 +7.43 10 
10 +8.83 6 
11 +4.00 8 
12 +3.86 10 
13 +5.93 8 
14 +7.18 8 
15 +2.50 9 
16 -26.29 2 
17 -2.64 7 
18 +7.43 8 

This table represents the combined genomic effect on maximum pain across all 
genes, genotypes, and phenotypes. A positive score indicates a predisposition 
for higher pain levels, while a negative score indicates a predisposition to 
lower pain levels and pain tolerance. 
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Table 23: Overall Genomic Effect on 

MME 
Patient Overall Effect MME Baseline 

1 -0.98 135 
2 -0.98 505 
3 -95.48 60 
4 -95.48 120 
5 +94.50 540 
6 -95.48 225 
7 -0.98 120 
8 +94.50 540 
9 -197.78 20 
10 -0.98 30 
11 +94.50 525 
12 -95.48 91 
13 0.00 180 
14 -197.78 37.5 
15 -103.28 30 
16 -102.30 30 
17 -102.30 75 
18 -103.28 115 

This table represents the combined genomic effect on morphine milligram 
equivalents across all genes, genotypes, and phenotypes. A positive score 
indicates an association with a higher morphine dose, while a negative score 
indicates a predisposition to lower morphine dose. All values are in milligrams. 
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Table 24: Overall Genomic Effect on 

PPS% 
Patient Overall Effect PPS% Baseline 

1 -31.19 30 
2 -11.12 40 
3 +2.39 40 
4 -11.12 40 
5 -5.01 50 
6 -11.12 40 
7 -31.19 30 
8 -11.12 40 
9 -8.33 40 
10 -28.40 40 
11 -5.01 40 
12 -11.12 40 
13 +11.65 50 
14 -5.01 50 
15 -14.44 40 
16 -14.44 40 
17 +39.60 60 
18 -5.01 50 

This table represents the combined genomic effect on PPS% across all genes, 
genotypes, and phenotypes. A positive score indicates an association with a 
higher percentage, while a negative score indicates a predisposition towards a 
lower percentage. All values are percentages. 
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APPENDIX 1. FULL GENE, GENOTYPE AND PHENOTYPE LIST 
 

Gene Genotype Phenotype 
ABCB1 c.3435T>C/c.3435T>C/c.2677T>G/c.2677T>G rs2032582 CC genotype/rs1045642 GG genotype 
 WT/c.2677T>G 

c.3435T>C/c.2677T>G 
WT/WT 
c.3435T>C/c.3435T>C/c.2677T>G 

rs2032582 AC genotype/rs1045642 AA genotype 
rs2032582 AC genotype/rs1045642 AG genotype 
rs2032582 AA genotype/rs1045642 AA genotype 
rs2032582 AC genotype/rs1045642 GG genotype 

ACE WT/WT 
WT/ACE Insertion 
ACE Insertion/ACE Insertion 

ACE Deletion 
Heterozygous ACE Insertion 
Homozygous ACE Insertion 

ADRA2A WT/WT 
WT/c.-1252G>C 
c.-1252G>C/c.-1252G>C 
c.-1252G>C/c.-217G>A 

rs1800544 GG genotype/rs1800545 GG genotype 
rs1800544 GC genotype/rs1800545 GG genotype 
rs1800544 CC genotype/rs1800545 GG genotype 
rs1800544 GC genotype/rs1800545 GA genotype 

AGTR1 WT/WT 
WT/c.*86A>C 

rs5186 AA genotype 
rs5186 AC genotype 

ANKK1 WT/WT 
WT/A1 
A1/A1 

Non A1 Carrier 
A1 Heterozygous 
A1 Homozygous 

APOE WT/WT 
WT/E2 

Non E2 Carrier 
E2 Carrier 

ATM WT/WT 
WT/c.175-5285G>T 
c.175-5285G>T/c.175-5285G>T 

rs11212617 CC genotype 
rs11212617 AC genotype 
rs11212617 AA genotype 

CDA WT/WT 
WT/c.-451C>T 
c.-451C>T/c.-451C>T 

rs532545 C Allele 
rs532545 T Allele 
rs532545 T Allele 

CES1 WT/WT rs71647871 C Allele 
CNR1 WT/WT 

WT/c.*3475A>G 
c.*3475A>G/c.*3475A>G 

rs806368 TT genotype 
rs806368 non-TT genotype 
rs806368 non-TT genotype 

COMT WT/WT 
WT/c.472G>A 
c.472G>A/c.472G>A 

Non MET Homozygous 
Non MET Homozygous 
MET Homozygous 

CYP1A2 *1C/*1C/*1F/*1F 
*1F/*1F 
*1C/*1F/*1F 
*1A/*1A 
*1A/*1F 

High Inducibility Metabolizer 
High Inducibility Metabolizer 
High Inducibility Metabolizer 
Normal Metabolizer 
Normal Metabolizer 

CYP2B6 *1/*1 
A785G/A785G/G516T/G516T 
A785G/A785G/G516T 
A785G/G516T 

Wild Type 
G516T Homozygous/A785G Homozygous 
G516T Heterozygous/A785G Homozygous 
G516T Heterozygous/A785G Heterozygous 

CYP2C19 *1/*1 
*1/*2 
*2/*2 
*1/*17 

Normal Metabolizer 
Intermediate Metabolizer 
Poor Metabolizer 
Rapid Metabolizer 

CYP2C8 *1/*1 
*1/*3 

Wild Type 
Allele 3 Carrier 

CYP2C9 *1/*1 
*1/*2 
*1/*3 

Normal Metabolizer 
Intermediate Metabolizer 
Intermediate Metabolizer 

Gene Genotype Phenotype 
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CYP2D6 *1/*1xN Ultrarapid Metabolizer 
 *1xN/*2 Ultrarapid Metabolizer 
 *1/*1 Normal Metabolizer 
 *1/*2 Normal Metabolizer 
 *1/*5 Normal Metabolizer 
 *1/*9 Normal Metabolizer 
 *1/*10 Normal Metabolizer 
 *2/*2 Normal Metabolizer 
 *2/*10 Normal Metabolizer 
 *2/*35 Normal Metabolizer 
 *4/*35 Normal Metabolizer 
 *5/*41 Intermediate Metabolizer 
 *41/*41 Normal Metabolizer 
CYP3A4 *1A/*1A Normal Metabolizer 
 *1A/*1B Intermediate Metabolizer 
 *1B/*1B Poor Metabolizer 
CYP3A5 *1A/*1A High Expresser 
 *1A/*3A Expresser 
 *3A/*3A Non Expresser 
 *3A/*7 Non Expresser 
CYP4F2 *1/*1 Normal Metabolizer 
 *1/*3 Intermediate Metabolizer 
 *3/*3 Poor Metabolizer 
DPYD *1/*1 Normal Metabolizer 
 *5/*9A Normal Metabolizer 
 *1/*5 Normal Metabolizer 
 *5/*5 Normal Metabolizer 
 *1/*4 Normal Metabolizer 
 *1/*9A Normal Metabolizer 
 *5/*9A/c.496A>G/IVS10-15T>C Normal Metabolizer 
 *9A/c.496A>G/IVS10-15T>C Intermediate Metabolizer 
 *6/IVS10-15T>C Intermediate Metabolizer 
 c.496A>G/IVS10-15T>C Poor Metabolizer 
DRD1 WT/WT rs4532 CC genotype 
 WT/c.-48G>A rs4532 non-CC genotype 
 c.-48G>A/c.-48G>A rs4532 non-CC genotype 
DRD2 WT/WT rs1799978 TT genotype 
 WT/c.-585A>G rs1799978 C allele Carrier 
ERCC1 c.354T>C/c.354T>C rs3212986 C Allele Carrier/rs11615 non-AA genotype/rs735482 AA genotype 
 c.*197G>T/c.*197G>T/c.354T>C/c.354T>C rs3212986 AA genotype/rs11615 non-AA genotype/rs735482 AA genotype 
 c.354T>C/c.354T>C/c.*931T>G rs3212986 C Allele Carrier/rs11615 non-AA genotype/rs735482 non-AA genotype 
 c.*197G>T/c.354T>C/c.354T>C rs3212986 C Allele Carrier/rs11615 non-AA genotype/rs735482 AA genotype 
 c.*197G>T/c.354T>C rs3212986 C Allele Carrier/rs11615 non-AA genotype/rs735482 AA genotype 
 c.354T>C/c.*931T>G rs3212986 C Allele Carrier/rs11615 non-AA genotype/rs735482 non-AA genotype 
 c.*197G>T/c.354T>C/c.*931T>G rs3212986 C Allele Carrier/rs11615 non-AA genotype/rs735482 non-AA genotype 
 c.*197G>T/c.354T>C/c.354T>C/c.*931T>G rs3212986 C Allele Carrier/rs11615 non-AA genotype/rs735482 non-AA genotype 
 WT/WT rs3212986 C Allele Carrier/rs11615 AA genotype/rs735482 AA genotype 
F2 WT/WT Wild Type 
F5 WT/WT Non Factor V Leiden Carrier 
 WT/c.1601G>A Factor V Leiden Carrier 
FAAH WT/WT rs324420 CC genotype 
 WT/c.385C>A rs324420 CA genotype 
 c.385C>A/c.385C>A rs324420 AA genotype 
G6PD WT/WT Normal G6PD Efficiency 
 A/A G6PD Deficiency 
GRIK4 WT/WT rs1954787 T Allele Carrier 
 WT/c.83-10039T>C rs1954787 T Allele Carrier 
GSTP1 WT/WT rs1695 AA genotype 
 WT/c.313A>G rs1695 AG genotype 
 c.313A>G/c.313A>G rs1695 GG genotype 
HLA-B WT/WT Wild Type 
 WT/*5701 HLA-B*5701 Allele Carrier 
 WT/*5801 HLA-B*5801 Allele Carrier 
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Gene Genotype Phenotype 
HTR1A WT/WT rs6295 CC genotype/rs1800044 C Allele Carrier 
 WT/c.-1019G>C 

c.-1019G>C/c.-1019G>C 
rs6295 non-CC genotype/rs1800044 C Allele Carrier 
rs6295 non-CC genotype/rs1800044 C Allele Carrier 

HTR2A WT/WT 
WT/c.614-2211T>C 
c.614-2211T>C/c.614-2211T>C 

rs7997012 non-GG genotype 
rs7997012 non-GG genotype 
rs7997012 GG genotype 

HTR2C WT/WT 
c.-759C>T/c.551-3008C>G/c.551-3008C>G 
c.551-3008C>G/c.551-3008C>G 
WT/c.551-3008C>G 
c.-759C>T/c.-759C>T/ 
c.551-3008C>G/c.551-3008C>G 

rs1414334 C Allele Carrier 
rs1414334 C Allele Carrier 
rs1414334 G Allele Carrier 
rs1414334 C Allele Carrier 
rs1414334 C Allele Carrier 

IFNL3 WT/WT 
WT/39738787C>T 
39738787C>T/39743165T>G 
39738787C>T/39738787C>T/ 
39743165T>G/39743165T>G 

Favorable Response Genotype 
Unfavorable Response Genotype 
Unfavorable Response Genotype 
Unfavorable Response Genotype 

ITPA WT/WT 
WT/c.124+21A>C 
WT/c.94C>A 
c.94C>A/c.124+21A>C 

Non-protective Wild Type 
rs7270101 C Allele Carrier 
rs1127354 A Allele Carrier 
rs1127354 A Allele Carrier/rs7270101 C Allele Carrier 

KIF6 WT/WT 
WT/c.2155T>C 
c.2155T>C/c.2155T>C 

rs20455 AA genotype 
rs20455 non-AA genotype 
rs20455 non-AA genotype 

MTHFR WT/WT 
WT/A1298C 
WT/C677T 
A1298C/A1298C 
C677T/A1298C 
C677T/C677T 

Wild Type 
A1298C Heterozygous Mutation 
C677T Heterozygous Mutation 
A1298C Homozygous Mutation 
C677T Heterozygous Mutation/A1298C Heterozygous Mutation 
C677T Homozygous Mutation 

NAT2 *5/*6/*12/*13 
*5/*5/*12/*12 
*5/*5/*12 
*6/*13 
*5/*12/*12/*13 
*4/*5 
*5/*12 
*5/*12/*12 
*5/*7/*13 

Slow Acetylator 
Slow Acetylator 
Slow Acetylator 
Intermediate Acetylator 
Intermediate Acetylator 
Intermediate Acetylator 
Intermediate Acetylator 
Intermediate Acetylator 
Slow Acetylator 
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Gene Genotype Phenotype 
NOS1AP c.178-20044C>T/c.178-13122C>T rs10494366 GG genotype/rs10800397 T Allele Carrier/ 
  rs10919035 T Allele Carrier 
 c.106-38510G>T/c.178-20044C>T/ rs10494366 GT genotype/rs10800397 T Allele Carrier/ 
 c.178-13122C>T rs10919035 T Allele Carrier 
 c.106-38510G>T/c.178-20044C>T/ rs10494366 GT genotype/rs10800397 T Allele Carrier/ 
 c.178-20044C>T/c.178-13122C>T rs10919035 T Allele Carrier 
 WT/c.106-38510G>T rs10494366 GT genotype/rs10800397 C Allele Carrier/ 
  rs10919035 C Allele Carrier 
 c.106-38510G>T/c.178-20044C>T rs10494366 GT genotype/rs10800397 T Allele Carrier/ 
  rs10919035 C Allele Carrier 
 c.106-38510G>T/c.106-38510G>T rs10494366 TT genotype/rs10800397 C Allele Carrier/ 
  rs10919035 C Allele Carrier 
 c.106-38510G>T/c.106-38510G>T/ rs10494366 TT genotype/rs10800397 T Allele Carrier/ 
 c.178-20044C>T/c.178-13122C>T rs10919035 T Allele Carrier 
 WT/WT rs10494366 GG genotype/rs10800397 C Allele Carrier/ 
  rs10919035 C Allele Carrier 
NQO1 WT/WT rs1800566 non-AA genotype 
 WT/c.559C>T rs1800566 non-AA genotype 
OPRM1 WT/WT rs1799971 A Allele Carrier/rs510679 TT genotype 
 WT/c.290+1050C>T rs1799971 A Allele Carrier/rs510679 non-TT genotype 
 WT/c.118A>G rs1799971 G Allele Carrier/rs510679 TT genotype 
 c.290+1050C>T/c.290+1050C>T rs1799971 A Allele Carrier/rs510679 non-TT genotype 
SCN2A WT/WT rs2304016 non-GG genotype 
SLC6A4 S/S HTTLPR Short Form 
 S/LA HTTLPR Long Form 
 LA/LA HTTLPR Long Form 
 LA/LG HTTLPR Long Form 
 S/LG HTTLPR Short Form 
SLCO1B1 *1/*1 Normal Activity 
 *1/*5 Intermediate Activity 
TPMT *1/*1 Normal Metabolizer 
UGT1A1 *1/*1 Non *28 Allele Carrier 
 *1/*28 Heterozygous *28 Allele Carrier 
 *28/*28 Homozygous *28 Allele Carrier 
UGT2B15 *1/*1 rs1902023 AA genotype 
 *1/*2 rs1902023 non-AA genotype 
 *2/*2 rs1902023 non-AA genotype 
VKORC1 WT/WT rs9923231 G Allele Carrier 
 WT/-1639G>A rs9923231 A Allele Carrier 
 -1639G>A/-1639G>A rs9923231 A Allele Carrier 
XRCC1 WT/WT rs25487 T Allele Carrier 
 WT/-1639G>A rs9923231 A Allele Carrier 
 c.1196A>G/c.1196A>G rs25487 C Allele Carrier 
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