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ABSTRACT 

A COMPUTATIONAL APPROACH WITHIN 
 MEDICAL RESEARCH 

        Ryan Hogan 

 

Within the context of medical image diagnosis, we explore novel computational 

models to facilitate the detection of two medical conditions that burden our society. In 

particular, this research focuses on the use of deep learning models for the detection of 

Alzheimer’s Disease in Magnetic Resonance images (MRI) scans, as well as the detection 

of heart arrhythmias from electrocardiogram (ECG) recordings.  We propose a novel 

architecture that depends on the 3D-CNN model to classify between MRI scans of 

cognitively healthy individuals and AD patients. Moreover, we explore the use of LSTM 

deep learning models to detect abnormal heart arrhythmias that present life-threatening 

challenges for individuals with underlying conditions that may not be recognized through 

current practices. The goal of this research is to measure the efficacy and predictability of 

applying deep learning techniques to detect AD by mapping the complex heterogeneity of 

the brain, and heart arrhythmias in ECG time-series recordings in a computational way.  
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CHAPTER 1  

INTRODUCTION 

1.1 Deep Learning within Medical Research 

The effort to introduce new forms of diagnosis and treatment options falls in the 

domain of an alternative approach to human intelligence. Deep learning techniques have 

offered a comprehensive understanding of the human body, as well as the identification 

of diseases and other health conditions alike. Current healthcare practitioners often ignore 

a computational approach that aid in the proper diagnosis of patients in a qualitative way 

[19]. By collecting informative data such as radiology scans, medical history information, 

and diagnostic data, deep learning offers a computational approach to derive probabilistic 

predictions by examining and correlating these interrelated concepts. In current practices, 

medical practitioners may examine health records and other patient information such as 

radiology scans and laboratory data to form an understanding of health conditions and 

provide diagnostic treatment options. However, it can be argued that the misdiagnosis of 

illnesses and health conditions tends to be detrimental to one’s health due to inaccurate 

readings or human error, at an average rate of 10-15% of the time [10].  

Due to such inaccuracies, deep learning provides a more sophisticated approach 

to assist doctors in the discovery and proper diagnosis of health conditions in a 

computational way. The collection of data from others who have experienced the same 

illnesses motivate a stronger prediction from deep learning models that achieve success 

by examining large amounts of information. Deep learning informs a probabilistic 

prediction through the collection of image and text-based qualitative data by learning 
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“features” within a contiguous set of information [4]. In the case of an image, local 

neighborhoods within adjacent pixels can be examined to perform feature extraction in 

lower levels of the deep learning network. As more informative features are recognized 

throughout multiple iterations of the network, an output can be determined by adding 

non-linearity activation functions such as the sigmoid function. Medical research, with 

the help of deep learning, will continue to benefit from a computational approach of data 

collection and analysis to inform new insights into medical education and diagnosis. 

1.2 Alternative Diagnosis to Alzheimer’s Disease and Arrhythmias 

The most common method of tracking AD progression has been facilitated 

through magnetic resonance imaging (MRI) as a non-invasive tool for detecting changes 

in brain volumes throughout incremental scans. Machine learning has offered an alternate 

form of detection in MRI scans by utilizing multiple algorithms such as Support Machine 

Vector (SVM) and Random Forest (RF) to perform classification tasks through linear 

SVM classification and majority voting in RF. Other approaches such as Region Of 

Interest (ROI) patch detection, biomarkers, and cerebral spinal fluid (CSF) are alternative 

methods for  performing classification of AD. However, there has been recent knowledge 

to suggest a potential lack of information in ROI patches as well as being error-prone and 

labor-intensive [16]. For this reason, ROI was not considered for this study despite being 

popular in some 3D models where whole-brain volumes are used, following a 3D patch 

for areas known to represent AD degeneration [16].  

The detection of abnormalities within ECG data can often go unidentified because 

of the inability to receive proper healthcare or the subtleness of the arrhythmias. Because 

of this, a computational approach has been adopted to identify these potentially minute 

changes within time-series data to derive a diagnosis of arrhythmias within the heartbeat. 
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In this study, we propose the use of long short-term networks (LSTM) to provide an 

insightful approach in detecting irregularities in raw ECG data. LSTM neural networks, a 

subdivision recurrent neural networks (RNN), and deep learning do a remarkable job in 

remembering information from previous layers of the network while passing the most 

important information along to the next iteration of the network. In this case, LSTM is able 

to utilize the time-series data of ECG recordings to remember informative features in the 

signals and then pass the most relevant information along the network to detect changes 

between corresponding signals [15]. 

1.3 Thesis Statement 

The goal of this research is to inform a reputable understanding of a 

computational approach to identify and diagnose health conditions in real-world 

applications. We propose two separate examples of how deep learning can 

facilitate new discoveries in medical research, particularly in the diagnosis of 

Alzheimer’s Disease in MRI scans, and the detection of abnormal heartbeats in 

ECG recordings. Our question in this thesis is, “Does a deep learning approach 

offer discriminable insights to a proper diagnosis compared to current practices?”. 

We hypothesize that the use of 3D convolutional neural networks to detect 

Alzheimer’s Disease, and long short-term memory networks to identify abnormal 

heart arrhythmias will offer a more confident diagnosis to both conditions, 

including other health conditions in the domain through a computational 

approach.  
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CHAPTER 2 

ALZHEIMER’S DETECTION THROUGH 3D  
CONVOLUTIONAL NEURAL NETWORKS 

 
 2.1     An introduction to Alzheimer’s Disease 

 
Alzheimer’s disease (AD) is a debilitating type of dementia that can affect a 

person’s memory and cognitive behavior in both mild and extreme cases such as the 

inability to remember, focus, or even understand who you are [26]. AD is a common 

disease that has no cure and worsens over time, typically occurring in individuals of 65 and 

older, making up 50-60% of all dementia cases [26]. The ability to cure AD is not currently 

known while treatments such as prescription medication and therapy have not shown to 

slow degeneration within the brain. Changes in the brain allow AD to damage neurons 

throughout multiple compartments dealing with memory and cognitive function, 

specifically in the limbic system, temporal lobe, hippocampus, and cerebral cortex. The 

damage of these neurons is not repairable and breaks the communication pathways that our 

brains use to create short-term memories and maintain continuous cognitive function.  

The primordial development of AD can be seen through subtle changes in both 

behavioral and cognitive function, representing the transitional state of AD known as mild 

cognitive impairment (MCI). This is a critical stage of detection in which the disease can 

worsen and spread to other parts of the brain, slowing affecting regions that hinder a 

person’s cognitive function depending on the degenerative location in the brain. Detection 

of AD in early stages (MCI) is an important task to develop treatment remedies and offer 

potential management to this overwhelming disease. The detection of MCI becomes a 

challenge due to the subtle physiological changes in brain volumes that can occur when a 

patient has not fully converted to AD. The predictive power in training may yield lower 
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accuracies due to the difficulty required in identifying the conversion of MCI to AD. This 

can be seen in studies that do not meet similar benchmarks as the same model when 

classifying between NC and AD due to less discriminable brain changes. Model 

performance presented in [16] yielded an accuracy score of 73.04% when classifying 

between NC vs. AD and 68.49% in MCI vs. AD, respectively.  

 

Figure 2.1: Left (healthy control) and Right (AD) brain comparison. 
    

While under the same umbrella as machine learning, deep learning has initiated a 

more sophisticated approach by applying different methods such as convolutional neural 

networks (CNN), stacked auto-encoders (SAE), and deep belief networks (DBN) to extract 

low-level features within an image. For classification tasks, CNN’s have proved to be a 

valuable application for extracting learnable parameters as well as feature mapping within 
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medical imaging [14]. Moreover, the CNN explicitly takes an image as direct input to 

measure spatial information within adjacent pixels to assist in weight-sharing and 

backwards propagation. For this model, the CNN will be used to extract voxel information 

contained in MRI scans without the need for manual selection of image features typically 

done in ROI patches. However, to the best of our knowledge, most CNN approaches 

proposed in this domain, rely on 2D- convolutional layers that require MRI scans to be 

processed as 2D slices, thus ignoring the 3D spatial-structure of MRI brain scans. 

Processing MRI images as a 3D volume, instead of 2D slices, could potentially provide 

additional information that differentiates between AD, MCI, and HC groups, but it also 

introduces additional computational complexity in the model. In this paper, we explore the 

feasibility of a processing MRI image as a 3D volume, a CNN that utilized 3D 

convolutional layers.  

The goal of this research can be split into two parts including: the efficacy of using 

a 3D CNN to detect discriminable changes within brain values between normal control and 

AD patients, as well as detecting changes between mild cognitively impaired and AD 

patients, respectively.  The characteristics of a 3D convolutional network will allow for the 

use of all spatial dimensions when identifying changing within brain volumes, particularly 

in NC vs. AD patients. Our question in this thesis is, “Does a 3D convolutional neural 

network outperform 2D models that ignore the third spatial dimension?”. We hypothesize 

that 3D images have potential to detect degeneration between MRI scans of both HC and 

AD patients better than 2D slices by taking advantage of the third dimension, yielding a 

binary classification between two classes.  
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2.2 Related Work 

 Extensive research has been done to discovery of a cure to Alzheimer’s Disease, a 

disease that diminishes a total sense of sense due to its overwhelming symptoms and 

impairment on cognitive functions. The earliest studies of Alzheimer’s Disease have been 

established over 100 years ago, although our modern understanding of the disease has only 

been recognized since the early 1980’s [2]. In recent years, a new method of detection has 

been facilitated in a computational way to identify neurodegeneration in MRI scans. 

Researchers have begun to apply artificial learning techniques to bridge the gap in 

providing optimistic treatment options and encourage the discovery of a potential cure.  

 Early detection of Alzheimer’s Disease has been a common goal amongst 

researchers in the community. Identifying Alzheimer’s Disease in early stages may offer 

proactive treatment options before extensive degeneration occurs, causing atrophy in the 

brain. Leading research, such as [17], examines early detection of AD by combining a 2D 

convolutional neural network (CNN) with machine learning techniques such as Bagging 

[3] to identify discriminable brain regions that are known to represent Alzheimer’s Disease 

and mild cognitive impairment. By using the 2D CNN, an ensemble learning approach was 

employed to train base classifiers in 2D MRI slices. The ensemble learning approach 

allows the network to generalize the most discriminative MRI slices to predict 

classification results on unseen data. This study reports classification accuracies of 0.84 ± 

0.05, 0.79 ± 0.04, and 0.62 ±  0.06, respectively, for classifying Alzheimer’s Disease vs 

Healthy Control (HC), mild cognitively impaired converters (MCIc) and HC, and MCIc vs 

MCInc (non-converters to AD). Introducing machine learning to boost performance in a 

data-driven way may enhance the identification of brain regions that are known to represent 
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Alzheimer’s Disease. This technique is commonly found in 2D MRI slices to identify the 

most meaningful slices that detect areas of the brain known to represent Alzheimer’s 

Disease.  

 An intuitive approach used in [16] combines a 2D CNN with Regions of Interest 

patches (ROI) known to represent AD. These local patches are assembled into 2.5 

dimensional patches to train the CNN by identifying informative features in multiple 

regions of the brain such as the hippocampus and temporal lobe. They hypothesize that by 

extracting local patches, more high-level features can be identified by extracting areas of 

the brain known to represent Alzheimer’s Disease. Finally, the trained CNN-based features 

are combined into a feed-forward machine learning classifier to identify MCI converters 

to Alzheimer’s Disease. This is done by calculating the outputs as a formula to avoid the 

random generation of an input weight matrix, thus classifying as either converter/non-

converters using these features [16]. They report an accuracy of 68.49% in the 

classification of converters/non-converters when trained with converters/non-converters 

patches. Low performance accuracies in MCI converters are common due to less 

degeneration in brain tissue that can be harder to identify compared to a patient who has 

converted to Alzheimer’s Disease. However, they report a higher accuracy of 73.04% when 

trained with AD/HC patches. This tends to be a common trend amongst researchers in an 

effort to diagnose the early stages of mild cognitive impairment where identification of 

discriminable changes is much more subtle.   

2.3 Methods 

In this chapter, we discuss the dataset used in both training and testing of our model 

and the processing pipeline that was required. MRI scans require multiple preprocessing 
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steps that are crucial to training because of the image disparity than can be found between 

patients.  

2.3.1 Dataset 

To evaluate the feasibility of our model, magnetic resonance imaging (MRI) scans 

were downloaded from the Alzheimer’s Disease Neuroimaging Initiative. Founded in 2003 

by lead investor Dr. Michael W. Weiner, ADNI has become a leader in the field of 

neuroscience research, with a focus on evaluating the progression of mild cognitive 

impairment (MCI) and Alzheimer’s disease (AD) through MRI and positron emission 

tomography (PET) scans, biomarkers, and neuropsychological evaluations. The ADNI 

1.5T collection was downloaded because of its preprocessing pipeline including 3D 

gradwarp and B1 non-uniformity correction to prepare the scans for further processing. 

Consisting of three-axis slices (axial, coronal, sagittal), a 3D image is created by combining 

all planes. A total of 750 three-dimensional scans were used and divided evenly between 

Alzheimer’s Disease patients and a cognitively normal control group, respectively (n = 750 

scans: AD = 375, HC = 375). 

Figure 2.2: cross-section of brain, consisting of the coronal (left), axial 
(middle), and sagittal (right) slices. 
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 The average age of participants was 75y, comprising of T1 scans in the 

neuroimaging informatics technology initiative (NIFTI, .nii) format. T1 scans were used 

to brighten tissues with a high-fat content (white matter), allowing them to be more visible 

in the scan, while watery gray matter structures tend to appear darker [17]. The detection 

of degenerative brain tissue throughout multiple regions of interest (ROI) such as the 

hippocampus and cerebral cortex offers a prospective indication of AD. This is done by 

utilizing volumetric data to obtain full brain mapping within an MRI. This collection of 

data from ADNI is commonly used in AD research and can be seen in [5] to facilitate 

training.  

2.3.2      MRI Preprocessing 

Preprocessing of the MRI data was carried out using the CAT12 Toolkit pipeline 

with default settings. The pipeline includes affine regularization, spatial normalization, 

MNI space registration, image smoothing, white matter (WM) segmentation, and skull 

extraction on all images. Cat12 maps the brain to yield a 3D voxel space representing a 

specific volume within the image of (X, Y, Z) dimensions according to height, width, and 

depth. This creates volumetric three-dimensional data in the same process as [17]. After 

processing, each image had a new dimension of 121 x 145 x 121 voxels, with a spatial 

resolution of 1.5 x 1.5 x 1.5 mm3 for each voxel. The pipeline used in this research follows 

the same procedure as [17] for 3D brain segmentation through the Cat12 toolkit.  
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Figure 2.3: Post-processed MRI images after CAT12 Toolkit. 
 

The key importance to understanding neurodegeneration within 3D MRI scans falls 

within the domain of voxel-based morphometry (VBN), calculating the size of an 

individual voxel to compare with others in the local area. The comparison of voxels-values 

may offer distinguishable insights to volumetric changes between subjects of different 

groups. Understanding these changes allows for the comparison and surveillance of 

neurodegeneration over a period of time, particularly in MCI and AD patients. VBM 

performs voxel-wise comparisons of gray  matter concentration between two groups of 

subjects, in our case being NC vs AD. This will allow for the observation of volumetric 

changes within areas of the brain known to represent the advancement of AD. The 

following steps display the processing pipeline used by Cat12 to perform VBM analysis: 

1. Image Segmentation: Segmentation was achieved through white matter (WM), gray matter 

(GM), and cerebrospinal fluid (CSF) tissue probability maps to identify and highlight the 

different matter of the brain. In our case, WM illumination is critical because it houses 

nerve fibers, known as axons, which carry electrical signals to other neurons and can show 

degeneration linked to AD. 

2. Spatial Normalization: Due to variations in skull size, head position, and orientation, the 

alignment of patients is necessary to provide spatial normalization to all images being 

processed. By registering each image to the standard Montreal Neurological Initiative 
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(MNI) space, affine regularization is used to perform linear mapping and achieve global 

geometric transformation for all images. Lastly, to improve resolution and quality, a non-

linear transformation is done to minimize the regional differences in local deformations. 

3. Smoothing: A Gaussian filter is then applied to the segmented images to “clean up” the 

warping effects caused by spatial normalization which improves the signal ratio, thus 

increasing statistical power. 

4. Skull Stripping: The last processing step includes skull stripping to create a mask of the 

brain by removing all skull and dura matter. Cat12 uses an adaptive probability region-

growing (APRG) method to combine both GM and WM probability maps to yield a bias 

corrected mask of the scan  

                      

Figure 2.4: Data augmentation is performed through random rotations within the 3D image.  
 

Deep learning model performance has shown promising results in image 

classification tasks due to their ability to recognize features. Because of this stipulation, 

model performance is predicated on the characteristics of the dataset including the number 

of samples and the processing techniques that may have already been performed. Data 

augmentation is an important step to defend against overfitting of the model when there is 

low disparity between images. Particularly in medical imaging, it can be difficult to obtain 

large datasets due to limited online resources, patient privacy rights, and the amount of 

labor needed to label and organize data. This allows smaller datasets to function as larger 

ones due to the manipulation and “augmentation” of each image to promote disparity and 
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emulate a larger volume. In this study, we have obtained a semi-large dataset of 750 images 

that have been flipped, rotated, and gaussian blurred to perform image augmentation and 

reduce any imbalances in the dataset. 

2.4 Deep Learning Approach 

The CNN has displayed tremendous success as an image recognition tool that 

specializes in feature detection and can outperform its predecessors such as feedback neural 

networks by detecting learnable features within an image. In recent studies, 3D image 

classification has shown promising performance of AD classification through generic 

feature segmentation while using a CNN to reduce complexity [26]. The ability to detect 

features and inform a proper diagnosis has become integral in medical imaging to detect 

abnormalities within radiology scans such as MRI and PET [11]. Efficient diagnosis can 

offer alternative treatment plans such as medications and therapy that are typically 

accompanied by early detection of cancerous cells and degenerative tissues. The CNN will 

pass the MRI scans through multiple convolutional layers including filtering layers, 

pooling layers, and connected layers to provide a probabilistic output between 0 and 1 

using the sigmoid function. 

2.4.1 Convolutional Neural Networks 

Convolutional neural networks (CNN) boast the unique ability to accept images 

as direct input to perform calculations to learn local features, compared to other methods 

of machine learning that rely on raw text values to perform techniques such as 

classification and regression. Adding dimensionality to a model further increases the 

learning potential by introducing more features that can be captured within an image and 

then being vectorized before training. In our case, we aim to test the efficacy of 3D 
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networks that take advantage of the third spatial dimension to optimize variance and 

achieve predictability within our model. 

2.4.2   2D vs. 3D Networks 

Studies within the domain typically rely on the use of 2D networks to detect 

degenerative changes in the brain by slicing the image into cross-sectional planes. While 

there are several studies that use 3D networks for classification, 2D networks remain 

traditional due to their more simplistic architecture with less complexity in learning 

parameters and image size. However, while this may be beneficial for simplistic images 

with less features, a 2D approach may not be as suitable for medical imaging due to its 

inability to capture subtle changes while not utilizing the third spatial dimension. Because 

of this, most 2D networks are accompanied by multiple learning techniques including 

ensemble learning [17] and the use of ROI patches [16]. 

 

Figure 2.5: 2D and 3D convolutions map areas of an image to learn important features.  
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 When analyzing medical images, it can be  at times quite difficult to “eye-ball” 

physical changes within the image, depending on the nature of scan, and make an accurate 

assumption of how much change a tissue or mass has overgone. In the case of monitoring 

MCI, it’s imperative to understanding the timeline and progression of AD to inform a 

proper diagnosis. This idea displays the need for volumetric data when attempting to 

detect degenerative tissues and changes within brain volumes. Taking advantage of the 

third spatial dimension creates an opportunity to capture these changes by observing not 

only the height and width, but depth an area. By using 3D convolutional layers, important 

local patterns can be learned in a depth-wise approach by introducing complexity in the 

model  directly correlated by the specified number of filters in a convolutional layer.  This 

introduces the ability to learn even deeper features within an image to influence 

successful classification between multiple classes. While introducing complexity adds 

high variance, it also decreases the bias of your model because of the inability to 

generalize between images due to extreme model complexity, leading to overfitting. 

Because 3D architectures tend to be more complex, it’s imperative to understand the 

median between model variance and bias, verifying that your model has predictive 

capability while reducing generalization.  

2.4.3     Feature Extraction  

The CNN utilizes the connectiveness of neural networks to perform image 

analysis by applying convolutional layers with a list of filters. The number of filters 

denotes the filter mask size of the convolving window that moves around the image to 

detect different shapes and edges. Increasing the filter size in subsequent layers may allow 

the CNN to capture more complex features due to the larger area of pixel coverage.  It is 
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important to note that the number of kernel parameters change depending on the 

dimensionality of the network, meaning that a 3D network will have a filter size of (3 x 

3 x 3 pixels) compared to a 2D network with dimensions (3 x 3 pixels). Thus, ignoring 

the third dimension will exclude the depth of the scan where features may be more 

detectable utilizing a volumetric approach. The CNN performs well in feature extraction 

due to its “deep” architecture by stacking convolutional layers and down-sampling to 

increase the area view for each neuron. 

 

Figure 2.6: 2D CNN performing feature detection and mapping.  
 

CNN’s can be divided into two main functions: feature detection and feature 

extracting are used to obtain learnable parameters by calculating adjacent spatial 

dimensions (X, Y, X) within an image [26]. Learnable filters (i.e., weights) are applied in 

feature detection where each neuron is connected through receptive neurons of the previous 

layer to extract low-level features within an image [26]. Feature extraction is then 

performed by applying convolutional filters to the input to create feature maps of local 

areas. The down-sampling of spatial dimensions allow for max-pooling, batch 

normalization, and fully connected layers to increase the receptive field of each neuron to 

learn low level features. Lastly, the combining of all neurons into a single dense output of 
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one allows the CNN to effectively reduce the number of parameters in the network as well 

as the reduction of feature maps into a binary prediction between two classes. 

2.4.4    Model Architecture  

 Our proposed 3D-CNN architecture consists of five sequential layers of conv3D 

(with Relu activation function), batch normalization,  and max pooling layers. Sequential 

convolutional layers with local filters of 3 x 3 pixels were used to extract learnable 

parameters within MRI scans to capture spatial and positional relationships throughout the 

brain. Each iteration of conv3D applies 3-dimensional filtering (X, Y, Z) among the axial, 

coronal, and sagittal planes. Following is batch normalization, which stabilizes image 

weights and standardizes the inputs, and max pooling which down-samples the feature 

maps to iteratively reduce the image size. The rectified linear unit (ReLU) activation 

function was used in each convolutional layer to apply a linear identity to our input by 

returning 0 representing a negative input and 1 as a positive output. Below is the network 

architecture:  

 

Figure 2.7: The complete network topology 
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Following the four sequential layers, global average pooling is used to calculate the 

average output for the feature maps of previous layers, concluding with a fully connected 

dense layer of 512 to flatten all neurons in the network. Lastly, a dense layer of 1 is used 

to combine all neurons into a final connected output of 1. For the loss function, binary 

cross-entropy is used to yield a binary classification between two classes of HC and AD. 

Lastly, the sigmoid function is applied to find the probabilistic output of the model between 

0 and 1 through binary classification. Dropout was used after the first and third 

convolutional layers as well as before and after the fully connected layers to reduce the risk 

of overfitting by randomly setting neurons in the previous layer to 0 after each iteration. 

Experiments were performed on a single node RTX 2060 Super GPU. Model performance 

was tested for 200 epochs with an average epoch computation time of 132 seconds, for an 

average total runtime of 8 hours. 7 

 

2.5 Results 

A classification experiment between two classes, Alzheimer’s disease (AD) 

patients and a healthy cognitive control group (HC) was performed to classify MRI scans 

as either HC or AD through binary classification. Consisting of 750 scans, an 80-20 train-

test split was performed to utilize a training set for the model to learn features and a test 

dataset to perform validation against the train set. To avoid data leakage and promote image 

disparity, there was no overlap in scans between train and test classes. Binary classification 

was then performed between HC and AD, yielding an accuracy of 79%. Results of 

classification between HC and AD have shown to be at par or comparable to leading papers 
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in this research such as [17], with an accuracy of .84 ± .03 within a 2D CNN accompanied 

by ensemble learning (EL). 
 

 
The goal of this research was to show the efficacy of 3D convolutional networks in 

classification tasks while taking advantage of volumetric data to detect abnormalities. The 

results achieved offer insight into 3D models compared to other techniques such as support 

vector machine (SVM), random forest (RF), and principal component analysis (PCA) for 

classification tasks. The current results of our model show an accuracy that slightly 

outperforms the following study [5] when using SVM and PCA for classification tasks in 

MRI scans for AD detection (76% acc). To save time and computing costs, 2D models are 

also popular in classification tasks that take 2D images of either the axial, coronal, or 

sagittal planes to detect abnormalities within the angle of each plane. While being a simpler 

approach, 2D networks lack in extracting spatial information in non-volumetric data that 

is needed to efficiently map degeneration [25].  
2.6 Streamlit Application  

The effort to demonstrate this research has been achieved by developing a web-

application to return probabilistic predictions on test images between NC and AD. The 

Figure 2.8: Model accuracy during training over 200 epochs. 
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development of a web-application allows for the demonstration of our model by 

predicting on single test images and displays the three cross-sectional slices of the brain. 

The idea for this application was centered around simplicity in its deployment and 

reliability after launch. To solve these problems, we utilized Streamlit, an open-source 

Python library used for launching machine learning applications both quickly and 

efficiently. Built off Python, Streamlit allows for the integration of many different 

libraries and API’s to quickly develop ML applications for either demonstration or 

business purposes. The Streamlit library allows for the simple creation of widgets and 

templates to display data, accept input, and utilize your own model for testing purposes. 

This is extremely beneficial for professionals in the domain who are not concerned with 

web development and are only concerned with deploying their work. Thus, Streamlit was 

used to develop a simple webpage structure to demonstration our model by classifying 

MRI images between NC and AD patients.  
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Figure 2.9: Example output of the web application 
 
 
2.7 Discussion 

To inform a reputable classification with 3D images while using a CNN, this study 

is broken up into four key components: (1) Data collection was done by downloading T1 

weighted MRI scans from ADNI to facilitate testing between both HC and AD patients. 

The data was downloaded as 3D images in the NIFIT file format, which is commonly used 
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in neuroimaging research and follows the same collection used in [5]. Upon downloading, 

the images had already been processed through the ADNI pipeline to perform image 

correction and scaling. The images used consisted of cognitively healthy control patients 

as well as Alzheimer’s disease patients who have converted from MCI.  

    (2) MRI preprocessing was performed to normalize all images including white matter 

segmentation to highlight WM which exhibits degeneration in the brain. Preprocessing 

included registration to the MNI space, affine registration, spatial normalization, image 

smoothing, and image resizing of 121 x 145 x 121. These steps allow for the normalization 

of the brain volume to be within a range of 0 and 1. Image preprocessing is necessary for 

successful classification tasks and followed the same procedures seen in [17].  

   (3) The CNN was used to perform feature extraction and learn spatial information within 

adjacent pixels. This allows for the reduction of learnable parameters and has been a staple 

of image classification within medical imaging [24]. A four-layer convolutional stack was 

used including sequential convolutional layers, pooling layers, and batch normalization 

layers to reduce features and derive a binary classification of 1 between two classes HC 

and AD.  

    (4) An average binary classification accuracy of 0.79 was achieved using a 3D 

architecture to detect abnormalities within volumetric data. Results of this method can be 

comparable to other leading studies such as [5] who achieved an accuracy of .76 while 

using a 3D architecture including ROI patches. 
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CHAPTER 3 

ECG CLASSIFICATION USING LONG SHORT-TERM 
 MEMORY NETWORKS 

 
3.1 Introduction to Heart Arrhythmias 
 

Cardiovascular diseases and other underlying heart conditions continue to damage 

our society as being the number one cause of death in America, claiming a life every 36 

seconds [12]. Heart conditions such as arrhythmias, hypertension, and strokes can be life-

threatening to individuals who maintain a poor diet and carry a sedentary lifestyle. This 

has proven to be an issue within the United States where only one in four adults maintain 

an adequately healthy lifestyle requiring enough aerobic and muscular-strengthening 

activities to reduce the risk of cardiovascular diseases and others alike [12]. However, not 

all cardiovascular issues stem from lifestyle choices such as poor diet, smoking, and lack 

of physical activity. Heart arrhythmias present life-threatening conditions due to 

irregularities in heart function that may be predisposed or can develop throughout a 

lifetime. These irregularities in heart function can affect an individual in numerous ways 

including dizziness, irregular beat patterns, and rapid heart rate that depending on the 

severity of the arrhythmia, and the predisposal of the individual due to genetics and lifestyle 

choices, may result in life-threatening consequences.  

The intuition of this research stems from personal experience, while I suffered from 

an underlying heart condition called Wolf Parkinson White Syndrome (WPW). WPW 

syndrome is a congenital heart condition where an extra electrical pathway between the 

upper and lower chambers of the heart causes irregular and elevated heart rates, typically 

accompanied by exercise and is usually detected during adolescence. My condition went 

undetected for over a year despite the use of a heart monitor at all times, even during 
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athletic activity. When finally detected by ECG, my heart rate exceeded 220 BPM, a rate 

at which could be fatal to individuals with previous health concerns or are of older age. 

Future research will include the detection of WPW in ECG recordings by monitoring the 

preexcitation period of the heartbeat, including the potential signs that denote abnormal 

heart function that an individual may have and not be aware of.  

Arrhythmias may not always be prevalent to an induvial who shows no symptoms 

and may be considered a healthy individual. The detection of arrhythmias can go unnoticed 

because of the timing of the arrhythmias as well as the conditions, such as strenuous 

activity, that may be necessary to spike such occurrence. To monitor arrhythmias and heart 

functionality, an electrocardiogram (ECG) is the industry standard in identifying the 

rhythmic changes of the heart while detecting abnormalities within beat patterns through 

each cardiac cycle. The use of ECG monitors the cellular depolarization and repolarization 

of the heartbeat within a period of time, typically a ten-second strip [9]. The detection of 

abnormalities is prudent to proper treatment options depending on the severity and type of 

arrhythmia present.  

The human body is considered to be a large conductor of electrical signals where 

conductive ionic fluid in the body allows for recording the signals at the skin-level [9]. The 

importance of detecting these signals allow cardiologists to examine and diagnose potential 

abnormalities within beat patterns. Because ECG is time-series data, the specific electrical 

signals within the beat pattern can be identified to determine if there are any potential 

complications within the heart cycle. 
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Figure 3.1: A single ECG wave (Wikimedia Foundation, 2020). 

 

The goal of this research was to offer an alternate form of arrhythmia detection in 

ECG recording through the use of deep learning and LSTM neural networks. In our 

network, we will perform binary classification of normal heartbeats, and a superclass of 

eight arrhythmias including supraventricular ectopic beat, ventricular beat, fusion beat, 

myocardial infarction, myocarditis, valvular heart disease, myocardial hypertrophy, and 

bundle branch block.  

LSTM, as well as other deep learning methods have shown promising results in 

both binary and multi-class classification of normal and abnormal heartbeats within raw 

ECG data as seen in [13], achieving an accuracy of 95% in the classification of ECG 

signals using a Convolutional Neural Networks (CNN) + LSTM. It is necessary to note 

that while LSTM performs very well at classifying time-series data, other techniques have 

also shown promising results [23] by utilizing 2D CNN’s that take ECG images as input 

to identify discriminable changes between normal and abnormal beats with an accuracy 

of 97%. 
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3.2 Related Work 

 This paper aims to identify the classification of abnormal heartbeats through the 

use of long short-term memory (LSTM)  networks that excel at recording vital 

information in time-series data by forgetting non-informative features during training. 

We propose a two-layer network of 50 and 100 units, respectively, to provide a reputable 

performance compared to preceding research in the domain.  

 In recent years, a deep learning approach has been applied to identify abnormal 

arrhythmias in ECG recordings that are directly linked to both cardiac and non-cardiac 

disorders. Research in this field attempts to classify arrhythmias as either a binary 

classification, being a either normal beat, or abnormal beat considered. The abnormal 

class is made up of a super-class of arrhythmias for multi-class classification problems, 

where specific beats can be categorized within the dataset according to diagnostic class. 

The approach used by [25] performed binary classification through multiple techniques 

such as a recurrent neural network (RNN), RNN + gated recurrent neural network (GRU), 

and RNN + LSTM to identify heartbeats as either normal or abnormal. They report 

classification accuracies of 85.4%, 82.5%, and 88.1%, respectively, for RNN, RNN + 

GRU, and RNN + LSTM.  

 The results show that LSTM tends to report better results than a vanilla RNN 

network due to the effectiveness of using multiple hidden layers within the network. The 

dataset used was from the MIT-BIH Arrhythmia dataset, which is commonly compared 

to the dataset in our work from the PTB Diagnostic ECG Database and is often 

interchanged in this field of research. We hypothesize that [25] could improve 

performance by fine-tuning the number of activation units in the network's hidden layers 
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to learn more informative features in the ECG recordings. The study proposed used 

activation units of 64, 100, and 256, respectively, whereas we used 50 and 100 units in 

our hidden layers. The dropout rate can also be tuned to improve performance, where a 

dropout of 0.2 is used in every layer to drop neurons in the network to reduce overfitting 

and optimize the weights in the network.  

 An alternate deep learning method can also be used to detect abnormal heartbeats 

in ECG recording with a convolutional neural network (CNN). The CNN continues to be 

a prominent form of feature detection in classification tasks by accepting images as input 

to identify features in contiguous local areas. The CNN approach was used by [27] to 

perform binary classification of ECG recordings that have been preprocessed using the 

logarithmic transformation of the time-series data. After processing, the ECG recordings 

were fed into the CNN, consisting of 6 convolutional blocks with filters of 5 x 5. 

Temporal averaging is used to process the variable-length input ECG signals before they 

are fed into the linear SoftMax classifier, yielding a label of a probabilistic output between 

two classes. An accuracy of 90.5% was reported when only using the CNN to predict 

between normal and abnormal arrhythmias, which is at par with current papers in the 

domain. The CNN may not be suitable for time-series data due to potential information 

leakage because of increased parameters in the network and the need for aggressive data 

augmentation such as logarithmic transformation. 

3.3 Methods 

To evaluate the feasibility of our model, the Physikalisch-Techhnische 

Bundesanstalt (PTB) Diagnostic ECG Database [1] was used to classify between normal 

and abnormal arrhythmias. The collection of ECG recordings was pioneered by Professor 
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Michael Oeff, M.D., at the Department of Cardiology of University Clinic Benjamin 

Franklin in Berlin, Germany. The use of this dataset will help facilitate future discoveries 

in the cardiology field with its extensive amount of data as well as the necessary 

preprocessing steps to facilitate testing.   

3.3.1 Dataset 

The PTB database utilizes 16 input channels (14 for ECGs, 1 for respiration, and 1 

for line voltage), with an input voltage of ±16 mV, with a compensated offset voltage up 

to ± 300 mV. Each ECG signal is digitized at 1000 samples per second with a 16-bit 

resolution and a sampling frequency of 125Hz. The database contains 549 records from 

290 subjects with an age range of 17 to 87, while each subject contains 15 ECG signals, 

respectively. Below are the summary statistics of the participants of the database, as well 

as the diagnostic class for subjects within the database (the diagnostic class of 22 subjects 

was not available). 

 N Mean Age 

M 209 57.2 

F 81 55.5 

 

Table 3.1: Summary statistics for participants in the PTB Database. 
Of the diagnostic class, myocardial infarction leads in the number of subjects by 

a large margin. Myocardial infarction is a result of a blot clot in the epicardial artery that 

supplies blood to the heart, otherwise known as a heart attack [22]. Heart attacks remain 

one of the leading cardiovascular diseases in adults, so it does not seem uncommon that 

myocardial infarction makes up 71% of the diagnostic class. 
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Diagnostic Class Number of Subjects 

Myocardial Infarction  148 

Cardiomyopathy 18 

Bundle Branch Block 15 

Dysrhythmia 14 

Myocardial Hypertrophy 7 

Valvular Heart Disease 6 

Myocarditis 4 

Miscellaneous 4 

Normal Control 52 

 

Table 3.2: Subject breakdown according to diagnostic class 
3.3.2 ECG Preprocessing 

Of the diagnostic class, myocardial infarction leads in the number of subjects by 

a large margin. Myocardial infarction is a result of a blot clot in the epicardial artery that 

supplies blood to the heart, otherwise known as a heart attack [22]. Heart attacks remain 

one of the leading cardiovascular diseases in adults, so it does not seem uncommon that 

myocardial infarction makes up 71% of the diagnostic class. 
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Figure 3.2: The time-series data of an ECG recording 
 
 

All necessary preprocessing steps have already been performed on acquisition of 

the dataset. When constructing the train-test split, the label of each row was assigned as 

the target label ‘y’ to classify between normal and abnormal recordings. Below is example 

of a single plotted ECG recording. 

 
Figure 3.3: A single ECG recording that is plotted from a row of the PTB dataset. 
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3.4 Long Short-Term Memory Networks 

 In order to capture the subtle changes in time series data, LSTM utilizes memory 

blocks in the hidden layer to remember and forget various sequences to form a prediction 

[21]. These memory blocks control the mechanism of the network by storing the temporal 

state of the memory cells while being connected to input and output gates. Memory blocks 

perform well at remembering information throughout the loop of the network, allowing 

information to persist throughout the hidden layers and updated cell states. LSTM 

consists of four neural network layers that are used to store information from previous 

states and use two activation functions (tanh & sigmoid) to regularize both inputs and 

outputs. The LSTM repeating architecture is shown below. 

 

Figure 3.4: The generic LSTM architecture consists of four hidden layers [15] 
 
 
 The first process in LSTM is through the initial forget gate layer using the sigmoid 

function to output a number between 0 and 1. The closer the output value is to 0 is 

considered not valuable information, while closer to 1 being extremely valuable 

information for the network to remember. This initial mechanism allows the network to 
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understand parameters when given an input. The cell state of the previous input may need 

to be updated relative to the new information being passed, such as a different type of 

arrhythmia that was determined in the previous input [15]. 

cf 1= σ1(Wcf · [Ot−1, xt] + bcf) 

 The next process is done in two steps, where the sigmoid function acts as the input 

gate to decide which values are necessary to update and the tanh function creates a vector 

of these new candidate values [15]. 

It = σ2(WI · [Ot−1, xt] + bI) 

 The next layer updates the old cell state into a new state St by using the sigmoid 

layer (σ2) which decides the values to update for the next layer, and tanh layer ϕ1 to 

derive the new candidate values [15]. 

St = tanh(WS · [Ot−1, xt] + bS ) 

 Lastly, the cell state is updated using the function below, creating a final updated 

cell state as well as an output from the network. This cell state will be used for the next 

iteration of the network and may or may not be updated depending on the input [15].  

St = cf · St1 + It · St-1 

3.4.1 LSTM Architecture  

 The proposed network architecture utilizes a simple LSTM scheme to identify 

arrhythmias within ECG recordings. Identifying the temporal sequences within the ECG 

scan allows LSTM to develop long-range dependencies within the wavelengths, forming 

a prediction between two classes normal and abnormal. 
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Figure 3.5: Custom LSMT architecture used. 
 
 

The LSTM architecture begins by taking a one-dimensional ECG recording as 

input, passing it to the two LSTM layers. The model contains two LSTM layers of 50 and 

100 units, which determines the dimensionality of the hidden state and will return a 

sequence vector of dimension 100. Regularization was also used in a single dropout layer 

of (0.2) after the first LSTM layer to stabilize weights within the network. The network 

is then flattened into a single vector, expanding to the size of (None, 18700). Lastly, the 

sigmoid function is used to derive a single dense output through binary classification. The 

output of the model will be a probabilistic prediction of either a normal ECG recording 

or an abnormal recording. A batch size of 128 was used over 30 epochs during training. 

A training set of 10,185 samples were used to train our model, and 4,365 to validate it. 

Training was performed on a single-node RTX 2070 Super GPU. 

3.5 Results 

The performance of our model was evaluated through metrics such as accuracy, 

precision, and recall understanding the predictions our model is making. The goal of 
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model performance is to predict True Positives and eliminate the prediction of True 

Negatives, or even False Positives. Accuracy refers to the total number of correct 

classifications between normal and abnormal beat patterns ((TP + TN) / (TP + TN + FP 

+ FN)) . Precision is also used to measure the number of True Positives divided by the 

number of True Positives plus the number of False Positives (TP / (TP + TN)). Lastly, 

recall is considered to be the True Positive rate of the model, making the most relevant 

predictions (TP / (TP + FN)). 

 
Table 3.3: Confusion matrix 

 

A classification experiment between two classes was formed to identify 

arrhythmias within ECG recordings. The proposed LSTM model boasts an accuracy 

performance of up to 97% in the binary classification of both normal and abnormal 

heartbeats. The model performed extremely well in classifying ECG recordings due to 

LSTM’s ability to recognize temporal features in time-series data. Below is the complete 

table of model performance in ECG classification: 

 

Table 3.4: Model performance for accuracy, precision, and recall 
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Table 3.5: Performance accuracies of other models in ECG detection 

The detection of arrhythmias in ECG recordings using deep learning has been a 

relatively new practice in the research community. While there are multiple ways of 

detecting such arrhythmias including Convolutional Neural Networks, Stacked Auto-

Encoders, and LSTM, all offer different forms of detection using neural networks. The 

data being used may influence the specific network topology and approach in arrhythmia 

detection.  
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CHAPTER 4 

CONCLUSION 

4.1 Future Research 

 In this study, we introduce two computational approaches to address real-world 

medical diagnosis problems that continue to burden our society. The use of deep learning 

models has offered an alternate form of detection and understanding of health conditions 

in a data-driven way. This ushers in a new area of medical research that involves a 

potentially more accurate method of diagnosis compared to leading practices. Technology 

has reached a point where both the availability and amount of data can finally be 

harvested and applied artificial learning techniques, particularly in the healthcare domain. 

Research in this field continues to grow and will facilitate discoveries in healthcare as 

well as promote a better understanding of health conditions alike.  

An important task that is not currently presented in this study is the early detection 

of MCI to AD within MRI images. Mild cognitive impairment is an important turning 

point in the progression of AD when configuring treatment remedies and health care 

options. The need for early classification requires more attention to detail due to the subtle 

changes in the brain during mild impairment compared to the changes seen in 

Alzheimer’s Disease patients. Classification accuracies between MCI and AD have not 

shown to outperform NC and AD when detecting neurodegeneration due to the less 

extreme changes within the brain volume. The following study reached an accuracy of 

62% when testing MCI vs AD, and 84% for NC vs AD which is a considerable difference 

[17].  
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 Efforts are being made to create a model to classify between MCI and AD with 

an accuracy rate that approaches or exceeds current accuracies in literature. We have 

attempted to train our model to classify between MCI and AD with an accuracy of 58%. 

With an accuracy of barely over half, results were not included for this study with efforts 

of raising accuracies scores at par with the industry standards. Several considerations can 

be made including the fine-tuning of model parameters, increasing the data size, and 

transferring learning to potentially increase scores to reputable heights. 

 The purpose to detect and classify heart arrhythmias is a personal endeavor that 

has been directly experienced, motivating the purpose of this research. Heart arrhythmias 

may go unnoticed to seemingly healthy individuals that present no symptoms and carry a 

healthy lifestyle. Future research in the detection of heart arrhythmias will include the 

screening of WPW in the ECG time-series data by identifying time-interval changes in 

the QRS complex of the heartbeat, a segment known for representing preexcitation in the 

heart cycle. My condition went undetected for over a year, despite the constant use of a 

heart monitor designed to trigger when an abnormal arrhythmia had presented itself. 

However, WPW is not typically screened for in the United States. WPW accounts for at 

least 1% of sudden death in athletes and occurs in at least 1 to 4.5 per 1000 adults and 

children, while symptoms tend to be asymptomatic [18].  

 As an athlete at St. John’s University, I implore the efforts to further understand 

this heart condition and promote the screening for it at a young age. This research allows 

the opportunity to do just that by examining the characteristics of WPW by implementing 

it into our mode. Furthermore, the multi-class classification of other arrhythmias alike 
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will be introduced in future iterations to correctly identify other common arrhythmias that 

are listed in the diagnostic classes in the dataset section.  

4.2     Summary of Research 

 To inform a proper diagnosis and develop an understanding of Alzheimer’s Disease 

progression, deep learning was used within a 3D convolutional architecture to provide an 

alternate approach for abnormality detection in MRI image data. The research provided 

offers attention to the efficacy and predictive power when detecting the progression of 

neurodegeneration within brain scans. The use of a volumetric data proves to yield 

classification accuracies comparable or better to other studies that ignore the third spatial 

dimension during training.  

      Alzheimer’s disease continues to cause progressive issues within our society by 

overwhelming the physical and cognitive aspects of brain function that diminish a total 

sense of self. Although there is currently no cure, research in this field continues to grow 

and will hopefully facilitate future discoveries as well as the early detection of AD in MCI 

patients. Further research needs to be done to analyze the effectiveness of CNNs within 

medical imaging and neuroscience research, including the application between 3D 

architectures assisted by deep learning algorithms in its  domain. 

 The research presented offers perspective to the use of deep learning and LSTM to 

identify arrhythmias in ECG recordings. Each row in the dataset represents a single ECG 

recording as input, allowing LSTM to identify patterns within the recording to denote 

abnormalities of multiple types. The binary classification of normal and abnormal 

arrhythmias was used to classify ECG recordings with an accuracy of 97%. The research 

found presents a discussion on the efficacy of using LSTM instead of CNNs to identify 
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spectral features. Particularly in time series data, LSTM prove to be more effective in 

remembering informative features and forecast predictions in signals, compared to CNNs 

that classify images and no utilize memory within the network. 

 Heart conditions such as arrhythmias, heart disease, and strokes continue to present 

life-threatening challenges to individuals worldwide, promoting the attention to 

identification and treatment of such ailments. Arrhythmias can go unnoticed for years due 

to a lack of resources and the ability to recognize the prerequisite symptoms. This research 

offers perspective into the monitoring and detection of such arrhythmias due to their 

complexity and the ability to go undetected. Research in this domain can also be tested in 

the use of wearable monitors to detect arrhythmias in everyday activities, particularly in 

athletic-related activities. 

4.3 Conclusion 

 In this study, we introduce a computational approach in an effort to solve real-world 

medical issues that continue to plague our society and are difficult to diagnose. The use of 

deep learning has offered an alternate form of detection and understanding of health 

conditions in a data-driven way, ushering in a new area of medical research that involves 

a perhaps more accurate method of diagnosis than leading practices. Technology has 

reached a point where the availability and amount of data have can finally be harvested to 

apply artificial learning techniques to benefit society, particularly in the healthcare domain. 

Research in this field continues to grow and will facilitate new discoveries to solve the 

issues previously mentioned and will promote a better understanding of health conditions 

alike. 

 

 



40 
 

REFERENCES 

[1]    Bousseljot, R.; Kreiseler, D.; and Schnabel, A. Nutzung der EKG Signal 
datenbank CARDIODAT der PTB über das Internet, 1995. 

 
[2] Bondi, M. W., Edmonds, E. C., and Salmon, D. P. Alzheimer's Disease: Past,  

Present,        and Future. Journal of the International Neuropsychological Society 
: JINS, 23(9-10),    818–831, 2017. 

 
[3] Breiman, L. Bagging predictors. Machine learning, 24(2), 123-140, 1996. 
 
[4] Carin, L. On artificial intelligence and deep learning within medical education. 

Academic Medicine, 95(11S), S10-S11, 2020. 
 
[5] Christian, S.; Antonio, C.; Petronilla, B.; Gilardi, M. C.; Aldo, Q. and Isabella, 

C.; 2015. Magnetic resonance imaging biomarkers for the early diagnosis of 
Alzheimer’s disease: a machine learning approach. Frontiers in neuroscience, 9, 
307. 

 
[6] Christoforou, C.; Constantinidou, F.; Shoshilou, P.; and Simos, P. 2013. Single-

trial linear correlation analysis: application to characterization of stimulus 
modality effects. Frontiers in Computational Neuroscience, 7, 15. 

 
[7] Christoforou, C.; Haralick, R.M.; Sajda, P.; and Parra, L. C. 2010. The bilinear 

brain: Towards subject-invariant analysis, In 2010 4th International Symposium 
on Communications, Control and Signal Processing (ISCCSP), pp. 1–6. IEEE, 
2010. 

 
[8] Christoforou, C.; Hatzipanayioti, A.; and Avraamides, M. 2018. Perspective-

taking vs mental rotation: CSP-based single-trial analysis for cognitive process 
disambiguation. In Wang, S., Yamamoto, V., Jianzhong S., Yang Y., Jones, E., 
Iasemidis, L., Mitchell, T., (Eds.) Proceedings of International Conference, Brain 
Informatics (pp. 109-199). Arlington, TX, USA. 

 
[9] Dupre, A.; Vincent, S.; and Iaizzo, P. A. Basic ECG Theory, Recordings, and 

Interpretation. Handbook of Cardiac Anatomy, Physiology, and Devices, 191–
201. 

 
[10] Elstein A. Clinical reasoning in medicine. In: Higgs J, ed. Clinical reasoning in 

the health professions. Oxford, England: Butterworth-Heinemann Ltd, 1995;49–
59 

 
[11] Gupta, H.; Jin, K. H.; Nguyen, H. Q.;  McCann, M. T.; and Unser, M. CNN-Based 

Projected Gradient Descent for Consistent CT Image Reconstruction, in IEEE 
Transactions on Medical Imaging, 37(6), 1440-1453. 

 



41 
 

[12] Heart Disease and Stroke Statistics— 2021 Update: A Report From the American 
Heart Association. 

 
[13] Kłosowski, G.; Rymarczyk, T.; Wójcik, D.; Skowron, S.; Cieplak, T.; and 

Adamkiewicz, P. The Use of Time-Frequency Moments as Inputs of LSTM 
Network for ECG Signal Classification, 2020. 

 
[14] Kumar, A.; Kim, J.;  Lyndon, D.; Fulham, M., and Feng, D.; 2017. An Ensemble 

of Fine-Tuned Convolutional Neural Networks for Medical Image Classification in 
IEEE Journal of Biomedical and Health Informatics, 21(1), 31-40. 

 
[15] Kumar, J., Goomer, R., and  Singh, A. K.; 2018. Long Short Term Memory 

Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model 
For Cloud Datacenters. 

 
[16] Lin, W.; Tong, T.; Gao, Q.; Guo, D.; Du, X.; and Yang, Y.; 2018. Alzheimer’s 

Disease Neuroimaging Initiative. Convolutional neural networks-based MRI image 
analysis for the Alzheimer’s disease prediction from mild cognitive impairment.  
Frontiers in neuroscience, 12, 777.  

 
[17] Pan, D.; Zeng, A.; Jia, L.; Huang, Y.; Frizzell, T.; and Song, X.; 2020. Early 

Detection of Alzheimer's Disease Using Magnetic Resonance Imaging: A Novel 
Approach Combining Convolutional Neural Networks and Ensemble Learning. 
Frontiers in neuroscience, 14. 

 
[18] Rao, A. L., Salerno, J. C., Asif, I. M., and Drezner, J. A.; 2014. Evaluation and 

management of wolff-Parkinson-white in athletes. Sports health, 6(4), 326–332.  
 
[19] Razzak, M. I., Naz, S., and Zaib, A.; 2018. Deep learning for medical image 

processing: Overview, challenges and the future. Classification in BioApps, 323-
350. 

 
[20] Saadatnejad, S.; Oveisi, M.; and Hashemi, M.; 2019. LSTM-based ECG 

classification for continuous monitoring on personal wearable devices. IEEE 
journal of biomedical and health informatics, 24(2), 515-523. 

 
[21] Sak, H.; Senior, A. W.; and Beaufays, F. 2014. Long short-term memory recurrent 

neural network architectures for large scale acoustic modeling. 
 
[22] Saleh; Moussa; and John A Ambrose. “Understanding myocardial infarction.” 

F1000Research vol. 7 F1000 Faculty Rev-1378. 3 Sep. 2018 
 
[23] Salem, M.; Taheri, S.; and Yuan, J. 2018. "ECG Arrhythmia Classification Using 

Transfer Learning from 2- Dimensional Deep CNN Features," 2018 IEEE 
Biomedical Circuits and Systems Conference (BioCAS), pp. 1-4 

 



42 
 

[24] Singh, S.; Pandey, S. K.; Pawar, U.; & Janghel, R. R.; 2018. Classification of 
ECG Arrhythmia using Recurrent Neural Networks. Procedia Computer Science.  

 
[25] Singh, S. P.; Wang, L.; Gupta, S.; Goli, H.; Padmanabhan, P.; and Gulyás, B.; 2020. 

3D Deep Learning on Medical Images: A Review. Sensors, 20(18), 5097.  
 
[26] Yang, H.; Xu, H.; Li, Q.; Jin, Y.; Jiang, W.; Wang, J.; and Wang, T.; 2019. Study 

of brain morphology change in Alzheimer’s disease and amnestic mild cognitive 
impairment compared with normal controls. in General Psychiatry, 32 

 
[27] Zihlmann, M.; Perekrestenko, D.; & Tschannen, M. 2017. Convolutional 

recurrent neural networks for electrocardiogram classification. In 2017 
Computing in Cardiology (CinC) (pp. 1-4). IEEE



 
 

 

Vita 

 

Name       Ryan Hogan    

Baccalaureate Degree      Bachelor of Science, St. John’s 
       University, NYC, Major: Computer 
       Science 
 
Date Graduated     May 2020 
 
 
Masters Degree     Master of Science, St. John’s  
       University, NYC, Major: Computer 
       Science with Machine Learning 
 

Date Graduated     May 2021 

 

 

 

 

 


	A COMPUTATIONAL APPROACH WITHIN MEDICAL RESEARCH
	tmp.1647613196.pdf.Y6OIq

