
St. John's University St. John's University 

St. John's Scholar St. John's Scholar 

Theses and Dissertations 

2021 

MicroRNA Regulation and Cellular Proteostasis in Parkinson's MicroRNA Regulation and Cellular Proteostasis in Parkinson's 

Disease Disease 

Alberim Kurtishi 
Saint John's University, Jamaica New York 

Follow this and additional works at: https://scholar.stjohns.edu/theses_dissertations 

 Part of the Biology Commons, and the Neuroscience and Neurobiology Commons 

Recommended Citation Recommended Citation 
Kurtishi, Alberim, "MicroRNA Regulation and Cellular Proteostasis in Parkinson's Disease" (2021). Theses 
and Dissertations. 242. 
https://scholar.stjohns.edu/theses_dissertations/242 

This Dissertation is brought to you for free and open access by St. John's Scholar. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of St. John's Scholar. For more information, 
please contact fazzinol@stjohns.edu. 

https://scholar.stjohns.edu/
https://scholar.stjohns.edu/theses_dissertations
https://scholar.stjohns.edu/theses_dissertations?utm_source=scholar.stjohns.edu%2Ftheses_dissertations%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholar.stjohns.edu%2Ftheses_dissertations%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=scholar.stjohns.edu%2Ftheses_dissertations%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.stjohns.edu/theses_dissertations/242?utm_source=scholar.stjohns.edu%2Ftheses_dissertations%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fazzinol@stjohns.edu


MICRORNA REGULATION AND CELLULAR PROTEOSTASIS IN PARKINSON’S 
DISEASE 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

to the faculty of the         

DEPARTMENT OF BIOLOGICAL SCIENCES 

of 

ST. JOHN’S COLLEGE OF LIBERAL ARTS AND SCIENCES 

at 

ST. JOHN'S UNIVERSITY 

New York 

by 

Alberim Kurtishi 

Date Submitted 3/23/2021 Date Approved  4/9/2021 

______________________ ____________________ 
Alberim Kurtishi Simon Geir Moller 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Alberim Kurtishi 2021 
 

All Rights Reserved 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 
ABSTRACT 

MICRORNA REGULATION AND CELLULAR PROTEOSTASIS IN PARKINSON’S 
DISEASE 

Alberim Kurtishi 
 
 
 

 
Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder 

predominately affecting the aging population. It is the second most common 

neurodegenerative disorder after Alzheimer’s disease (AD) affecting over 1 million 

individuals in the US alone. Recent studies have tried to understand the exact nature in 

which healthy neurons transition to a degenerative state in PD. There are a multitude of 

combinatory factors that can lead to the development of PD including environmental 

factors, genetic factors, and aging. The majority of PD cases are sporadic in nature, 

however familial cases account for 5-10% of total PD cases world-wide. The hallmark 

feature of PD is the formation of Lewy bodies, abnormal protein aggregates enriched in 

the protein -synuclein (a-syn) in dopaminergic neurons of the substantia nigra. These 

aggregates affect the overall protein homeostasis (proteostasis) in neurons causing 

deleterious effects. The lack of accurate diagnostic biomarkers clearly represents a 

challenge for PD patients and their caregivers.  

It has become increasingly apparent that microRNAs (miRNA), key regulators of 

gene expression, are involved in numerous disease processes including PD. We 

investigated miR-335-5p and miR-3613-3p, two microRNAs previously reported by our 

laboratory, to be significantly up-regulated in serum samples of PD patients as compared 

to healthy age-matched controls. We also corroborated those findings when we extracted 



 
 

RNA from frontal cortex tissue of PD patients and age-matched controls finding that 

miR-335-5p, miR-3613-3p, and miR-6865-3p were all significantly upregulated in 

patients with PD. Using mass spectrometry and in silico prediction methods we identified 

a number of potential protein targets for both miR-335-5p and miR-3613-3p. Using 

several molecular approaches, we found that three proteins involved in PD pathogenesis 

are regulated by miR-335-5p and miR-3613-3p, respectively. Ataxin-3 (ATXN3), BCL2 

Associated athanogene 5 (BAG5), and Autophagy related 5 (ATG5) are all proteins 

targeted and regulated by both miR-335-5p and miR-3613-3p. miR-335-5p and miR-

3613-3p have not previously been characterized for their potential biological roles with 

respect to neurodegeneration or neuroprotection. In this study we further dissect the 

neuroprotective role of both miR-335-5p and miR-3613-3p  in cells induced with stress. 

Our results significantly contribute to our understanding of PD and the contributing 

factors to neurodegeneration.  



 ii 

 

TABLE OF CONTENTS 
LIST OF TABLES .................................................................................................... iv 

LIST OF FIGURES ................................................................................................... v 

ABBREVIATIONS ................................................................................................... vi 

Introduction ............................................................................................................... 1 

1.1. Parkinson’s Disease ....................................................................................................1 
1.2. Symptoms ...................................................................................................................................... 2 
1.3.1. Protein Aggregation ................................................................................................................... 6 
1.3.3. Autophagy .................................................................................................................................. 7 
1.4. Clinical significance ...................................................................................................................... 9 

1.5. miRNAs ......................................................................................................................9 

1.6. A-syn ........................................................................................................................ 11 

1.7. Parkin ...................................................................................................................... 12 

1.8. ATG5 ....................................................................................................................... 13 

1.9. Ataxin-3 ................................................................................................................... 14 

1.10. BAG5 ..................................................................................................................... 15 

2.0. Specific aims ..................................................................................................... 17 

2.1. Materials and Methods ...................................................................................... 18 

Buffers ............................................................................................................................ 18 

Bacteriological Techniques ............................................................................................. 20 

Cloning ........................................................................................................................... 22 

RNA processing and analysis .......................................................................................... 29 

Tissue culture and processing ......................................................................................... 34 

Protein analysis ............................................................................................................... 37 

Main Project: microRNA regulation of key PD proteins............................................ 41 

Introduction .................................................................................................................... 41 

Results ............................................................................................................................ 43 
miR-335-5p and miR-3613-3p show upregulated expression in post-mortem PD brains............ 43 
Overexpression of miR-335-5p and miR-3613-3p increase cell viability in response to oxidative 
stress .................................................................................................................................................... 45 
Increased expression of miR-335-5p and miR-3613-3p has neuroprotective effects .................... 48 
ATG5, Ataxin-3, and BAG5 are all regaulated by miR-335-5p and miR-3613-3p ...................... 51 
Discussion ........................................................................................................................................... 54 



 
 

iii 

Review Project: Cellular Proteostasis in Neurodegeneration. .................................... 56 

Introduction .................................................................................................................... 56 
Aim of paper ....................................................................................................................................... 58 

Collaborative Projects .............................................................................................. 61 

Effects of SNCA and disease-causing mutations on the proteome of SH-SY5Y cells ....... 61 

Alpha-Synuclein Multimerization is Dependent on Structural Characteristics of 
Repeated KTKEGV Regions........................................................................................... 63 

Review Project: The Intersection of Parkinson’s disease, viral infections and COVID-19
........................................................................................................................................ 66 

Concluding remarks .......................................................................................................................... 67 

Publications ............................................................................................................. 69 

Appendix A: List of Vectors ...................................................................................... 70 

Appendix B: Molecular size markers ........................................................................ 72 

REFERENCES ........................................................................................................ 73 

 
  



 
 

iv 

LIST OF TABLES 

Table 1.1. SDS Polyacrylamide gel recipe………………………………………….. 19 

Table 1.2. List of Primers…………………………………………………………… 22 

Table 1.3. Tissue Culture Guidelines……………………………………………….. 34 

Table 1.4. Cellular Treatments……………………………………………………… 36 

Table 1.5. List of Primary and Secondary antibodies………………………………. 38 

Table 1.6. Commonalities between Parkinson’s Disease and RNA virus  

Infection…………………………………………………………………………….. 67 

  



 
 

v 

LIST OF FIGURES 

Figure 1.1. Upregulation of PARKmiRs in brain samples………………………….. 44 

Figure 2.1. PARKmiRs significantly increase cell viability in response to 

 oxidative stress……………………………………………………………………... 47 

Figure 3.1. PARKmiRs show increased cell viability under neurotoxic 

 conditions…………………………………………………………………………... 50 

Figure 4.1. PARKmiRs 335 and 3613 significantly regulate expression of ATG5,  

BAG5, and ATXN3………………………………………………………………… 53 

Figure 1.2. Altered proteostatic levels and protein conformations lead to  

hallmark pathological neurodegenerative pathways……………………………….. 58 

Figure 2.2. Pathway of protein throughout the ER………………………………… 59 

Figure 3.2. Neurodegenerative disorders alter specific steps in the  

autophagic pathway………………………………………………………………... 60 

Figure 1.3. Whole cells lysate results of transfections of pathological variants  

Of SNCA as well as wt-SNCA to mimic duplication/triplication event ……………. 62 

Figure 1.4. Subcellular fraction comparison of alpha-synuclein in M17D cells 

stably overexpressing repeat mutant SNCA……………………………….………. 65 

Figure 1.5. The Brain-Gut microbiota axis………………………………………... 68 
 
  



 
 

vi 

ABBREVIATIONS 

C ……………………………………………………………………. Degrees Celsius 

AD ………………………………………………………………. Alzheimer’s Disease 

ALS …………………………………………………... Amyotrophic Lateral Sclerosis   

APP ………………………………………………………. Amyloid Precursor Protein 

ATG5 …………………………………………………….. Autophagy Related Gene 5 

ATXN3 ………………………………………………………………………. Ataxin 3 

BAG5 ………………………………………………… Bcl-2-associated athanogene 5 

BME ………………………………………………………………. -Mecaptoethanol 

BSA …………………………………………………………. Bovine Serum Albumin 

cDNA ………………………………………………………….. Complementary DNA 

CMA ………………………………………………... Chaperone Mediated Autophagy 

CSF ……………………………………………………………….. Cerebrospinal fluid 

DA ……………………………………………………………………… Dopaminergic 

DIW ………………………………………………………………….. Deionized water 

DLB …………………………………………………….. Dementia with Lewy Bodies 

DMSO …………………………………………………………… Dimethoxysulfoxide 

DNA …………………………………………………………… Deoxyribonucleic acid 

GBA ………………………………………………………………. Glucocerebrosidase 

GD ………………………………………………………………….. Gaucher’s disease 

HD ………………………………………………………………. Huntington’s disease 

Hsp70 …………………………………………………………... Heat shock protein 70 

kDa ……………………………………………………………………….. Kilodalton’s 



 
 

vii 

L ………………………………………………………………………………… Liter 

L-DOPA ……………………………………………………………... Levo-dopamine  

LB ………………………………………………………………………. Lewy bodies 

LB …………………………………………………………………… Lysogeny Broth 

LRRK2 …………………………………………………. Leucine-rich repeat kinase 2 

M ………………………………………………………………………………. Molar 

MCS …………………………………………………………… Multiple cloning site 

Min ………………………………………………………………………….. Minutes 

miRNA …………………………………………………………………… microRNA 

MPTP ………………………………... 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine 

mRNA ……………………………………………………………… Messenger RNA 

mtDNA ………………………………………………………… Mitochondrial DNA 

ng ………………………………………………………………………... Nanograms 

NIH ……………………………………………………. National institutes of Health 

NTC …………………………………………………………… No Template Control 

O/N ………………………………………………………………………... Overnight 

PAGE …………………………………………… Polyacrylamide gel electrophoresis 

PARKmiRs …………………………………… Diagnostic biomarker-miRNAs in PD 

PBS ………………………………………………………... Phosphate buffered saline 

PCR ……………………………………………………….. Polymerase chain reaction 

PD ………………………………………………………………... Parkinson’s disease 

PINK1 ……………………………………………… PTEN-induced putative kinase 1 

QC …………………………………………………………………… Quality Control 



 
 

viii 

qRT-PCR …………………………………….. Real-time polymerase chain reaction 

RNA ………………………………………………………………. Ribonucleic acid 

RNase …………………………………………………………………. Ribonuclease 

ROS ……………………………………………………….. Reactive oxygen species 
 
Rpm ………………………………………………………… Revolutions per minute  

RT ………………………………………………………………. Room Temperature 

RT-PCR …………………………. Reverse Transcriptase polymerase chain reaction 

SDS …………………………………………………………. Sodium dodecyl sulfate 

SNc …………………………………………………. Substantia nigra pars compacta 

SNCA ………………………………………………………………. Alpha-synuclein 

TE ………………………………………………………………. Tris-EDTA solution 

TEMED ……………………………………. N,N,N,N’-tetramethyl ethylene diamine 

Tris ……………………………………………. Tris (hydroxymethyl) aminomethane 

UV ……………………………………………………………………….. Ultra-violet 

v/v ………………………………………………………………… Volume to Volume 

w/v ………………………………………………………………… Weight to Volume 

WT …………………………………………………………………………. Wild-type 

g ………………………………………………………………………….. Microgram 

l …………………………………………………………………………… Microliter 

M ………………………………………………………………………… micromolar  



 
 

1 

Introduction 

 
1.1. Parkinson’s Disease 
 
 
Neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease 

(AD), Huntington’s disease (HD), and Amyotrophic lateral sclerosis (ALS) are all caused 

by neuronal dysfunction and cell death. Neurodegeneration is a complex process often 

influenced by a combination of genetic, molecular, and environmental factors [1]. PD is 

an irreversible and slow progressing disorder involving both motor and non-motor 

symptoms such as sleep disorders, loss of smell, depression, and skin problems [2]. PD is 

the second most common neurodegenerative disorder associated, with selective 

degeneration of dopamine-producing neurons in the substantia nigra pars compacta 

(SNpc) [3]. The appearance of Lewy Bodies (LB) is a pathological hallmark of the 

disease and was first discovered by Frederic Lewy in 1912. These LBs are abnormal 

aggregation of proteins mainly alpha-synuclein (-syn), that cause an array of issues for 

neuronal cells, ultimately leading to cell death [4]. PD affects over 5 million individuals 

worldwide, and over 1% of the US population over the age of 60. This number is grossly 

underestimated because of the limitations we currently have diagnosing this disease. 
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1.2. Symptoms 
 
PD is characterized by both motor and non-motor symptoms, but most individuals are 

diagnosed when characteristic motor symptoms appear. It has been shown that by the 

time motor symptoms occur, 60-80% of dopaminergic neurons have already been 

compromised severely limiting treatment options [5]. Parkinsonism is a syndrome 

characterized by tremor, bradykinesia, rigidity, and postural instability [6]. These four 

cardinal signs are what physicians currently use to diagnose patients with suspected PD 

along with the clinical history of the patient and a possible DaTSCAN.  

Tremor is the most common and well-known symptom of the four major motor 

symptoms. Tremor is defined as a rhythmical, involuntary oscillatory movement of a 

body part [7]. Resting tremor is developed at the onset of the disease and worsens as PD 

progresses [8]. Making an accurate diagnosis of tremor disorders is challenging, since 

similar disorders such as essential tremor (ET) and dystonic tremor can all cause 

misdiagnosis [9]. Tremors are more common in arms compared to legs and the frequency 

of these tremors is usually 4-6 hertz [10].  

Bradykinesia is characterized by reduction in spontaneous movements giving an 

appearance of stiffness. This stiffness and reduction in movement affects a patients 

ability to perform daily tasks such as writing, brushing teeth, and getting dressed [10]. 

There are a range of issues that are related to bradykinesia, however in most cases the 

principal deficit is that movements are slow. Several factors contribute to bradykinesia 

such as muscle weakness, tremor, rigidity, and the primary factor is due to insufficient 

recruitment of muscle force during initiation of movement, this results in patients’ 

movements undershoot their targets [11]. 
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Rigidity is a hypertonic state characterized by constant resistance throughout 

range of motion that is independent of velocity [12]. Rigidity is one of the physician’s 

telltale sign that helps them diagnose PD. It is caused by loss in muscle tone accompanied 

by extreme stiffness [8]. Further, rigidity is often asymmetric but affects the entire body 

as the disease progresses. This can lead to problems with achiness or pain in the muscles 

or joints affected. Many people with PD will have reduced arm swing when walking, 

more so on the most affected side. It has also been shown that rigidity negatively impacts 

sleep quality due to pain making it hard to fall or stay asleep [13].  

Postural instability refers to imbalance and loss of ability to stand upright. This 

loss of reflex and imbalance leads to frequent falls, which may cause bone fractures [8]. 

Postural instability has been identified as a feature of late-stage PD, and considered one 

of the most important criteria for diagnosing and categorizing PD patients [14]. These 

motor impairments are caused by dopaminergic neuronal deficits [15]. One study found 

that about 38% of patients experience falls due to instability and the frequency of falls 

increases with severity of the disease [16]. These falls are the most common reason for 

emergency room visits and largest motor related contributor to health care costs in PD 

patients [17].  

There are also some non-motor symptoms associated with PD, which include 

sleep disorders, psychosis, dementia, depression, hallucinations, and mood disorders to 

name a few [8]. Gastrointestinal (GI) issues such as constipation and excessive saliva, as 

well as loss of smell, are also observed in patients especially during the early stages of 

the disease, and usually antedate the first occurrence of motor signs [18]. In 2003, Braak 

et al. hypothesized that an unknown pathogen in the gut could be responsible for the 
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initiation of sporadic PD [3]. Braak postulated that sporadic PD starts in two places: the 

neurons of the nasal cavity and the neurons in the gut causing the spread of -syn via the 

vagus nerve and olfactory bulb [19]. The Braak hypothesis has also received criticism 

due to the fact that not all PD patients follow the proposed staging system. The mean age 

of onset is 60, however some cases appear between the ages of 20-50 [10]. Some studies 

point to PD being more common in men as compared to women [20].  

 

 
1.3. Four factors influencing PD pathogenesis 
 
The exact cause for the onset of PD is still unknown, however there are many risk factors 
  
associated with developing PD. It is unlikely that a single factor contributes to PD, 

instead a multitude of factors such as age, genetics, environmental factors, and many 

molecular factors such as protein aggregation, autophagy, and mitochondrial dysfunction 

most probably act in concert.  

Age is usually one of the major factors when it comes to neurodegenerative 

diseases [21], and PD is characterized as an age-related disorder. The risk of developing 

idiopathic PD after the age of 60 increases dramatically. This age-related risk is due to a 

multitude of factors which include the inherent weakening of the neuronal cellular repaid 

system [22], as well as increased genetic mutations. Neuronal protein aggregation 

represents a hallmark of PD pathogenesis and proteosome dysfunction may contribute to 

the increased susceptibility of developing PD [23]. Mitochondrial dysfunction also 

increases with age and can lead to increased levels of reactive oxygen species (ROS) [24] 

which has damaging cellular effects contributing to PD.  
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Genetics also play an important role in both idiopathic and familial PD. Most PD 

cases are sporadic, however approximately 10% of cases are familial or genetic [25]. 

Mutations in genes such as Leucine-rich repeat kinase 2 (Lrrk2), PTEN-induced putative 

kinase 1 (PINK1), a-syn and Htra serine peptidase 2 (Park13) are all associated with PD 

onset and progression [26, 27]. Autosomal recessive forms of early-onset PD are caused 

by mutations in Parkin (PARK2) [28], and PTEN-induced putative kinase 1 (PINK1) 

[29], both Parkin and PINK1 lead to mitochondrial dysfunction through the E3-ubiquitin 

ligase pathway [30]. Despite extensive studies the molecular and genetic pathways 

leading to the onset and progression of PD are poorly understood. 

Environmental factors have also been shown to have a causative role in the onset 

of PD. For example, paraquat (1’-dimethyl-4-4’-bypyridinium dichloride) has been 

associated with PD where subjects, usually farmers associated with this pesticide, have an 

increased risk of developing PD [31]. Paraquat causes an increase in ROS levels leading 

to increased oxidative stress in neurons [32]. Insecticides and Organochlorides, such as 

dieldrin, have also been shown to increase the risk of developing PD [33]. Interestingly, 

some studies have also suggested that metal toxicity is correlated with the risk of 

developing PD [34]. Indeed, one finding showed that postmortem PD brains had 

increased iron levels [34], and that this elevation could in turn cause an in increase in 

oxidative stress ultimately leading to cell death. Metal toxicity alone does not necessarily 

increase the risk of developing PD, however coupled with other contributing factors it 

may increase the occurrence of PD.  

Molecular factors contributing to the onset of PD include protein aggregation, 

oxidative stress, and autophagy and are described in more detail in the following sections. 



 
 

6 

However, as a high level summary all of these factors contribute to proteostasis 

dysfunction in cells. 

 

1.3.1. Protein Aggregation 
 
The aggregation of disease-specific proteins is a hallmark of many neurodegenerative 

disorders. The presence of pathological aggregates, often called bodies or inclusions, 

certainly classify both PD and AD. In most cases these pathological aggregates result 

from the accumulation of misfolded and damaged proteins. In PD, LBs are enriched in -

syn and this aggregation has been correlated with inappropriate protein misfolding, and 

protein accumulations. -syn proteotoxicity has traditionally be attributed to LB 

formation in neurons. However, more recent studies have emerged suggesting that 

smaller non-fibrillar, multimeric species of -syn are more significant to PD 

pathogenesis [35, 36]. These multimers interact with and damage cell membranes [37]. 

Inappropriate autophagy is also implicated in the abnormal protein accumulation and 

aggregation of proteins such as SNCA as cells age. Proteosome dysfunction is also 

responsible for accumulation of aggregated proteins such as a-syn due to its inability to 

clear misfolded proteins [38].  

 

1.3.2. Oxidative stress 

Oxidative stress is the major source of mitochondrial dysfunction, which is caused either 

by dysfunctioning mitochondria producing more ROS or the inabilty to sustain proper 

regulation of ROS [39]. The consequences of oxidative stress are overarching and 

devastating to the cell; due to its deleterious effects oxidative stress is a key element to 
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elucidating the link between neurodegenerative diseases and age [39]. Oxidative stress 

can alter transcription and translation of disease proteins by reacting with transcription 

factors or altering enzymes respectively. Neurons combat oxidative stress by employing a 

battery of antioxidant proteins called Peroxiredoxins involved in regulating H2O2 levels 

[40]. Oxidative stress contributes to neuronal cell death in PD due to a gradual decrease 

of the cells ability to cope with cellular damage over time [41].  

Several key PD-associated proteins are linked to mitochondrial function and ROS 

regulation such as, PINK1, PARK13, Parkin, and -syn. PINK1 along with Parkin 

regulates mitophagy in response to mitochondrial dysfunction. PARK13, also activated 

by PINK1, is a protease, which removes damaged mitochondrial proteins [42]. PARK13 

mutations have been associated with oxidative stress and PD phenotypes, while 

overexpression and knockout mouse models have shown both neuroprotection and PD 

phenotypes [43, 44]. The accumulation of a-syn on the outer and inner membranes of 

mitochondria in dopaminergic neurons decrease mitochondria complex 1 activity and 

induced ROS levels [45]. Furthermore, mitochondria are fundamental regulators of 

apoptosis, which makes oxidative stress-induced mitochondrial dysfunction an important 

factor in relation to both PD and aging [46]. 

 

1.3.3. Autophagy 
 
Autophagy is a cellular process that involves the efficient and selective degradation of 

misfolded/ aggregated proteins [47]. Autophagy is a lysosomal-mediated degradation 

pathway that is activated under stress conditions to degrade and eliminate damaged 

organelles and proteins [48]. The process of autophagy is driven by a group of 



 
 

8 

autophagy-related proteins (ATGs) that are responsible for autophagosome formation, 

vesicle expansion, infusion with the lysosome, and cargo recruitment [49]. A complex of 

protein kinases initiates the signaling mechanism that controls the activation of 

autophagy, one of which is the mammalian target of rapamycin (m TOR) [50]. Defects in 

autophagy are associated with the pathogenesis of many neurodegenerative diseases and 

controlled modifications of autophagy may prove very useful in the development of 

possible therapeutics [51]. Autophagy provides a clear link to PD and aging due to the 

decline in cells ability to properly remove misfolded and aggregated proteins [44]. The 

pathogenic mutations of -syn A30P and A53T have been shown to block the uptake of 

damaged proteins or substances by the lysosome [52]. This inhibition is one of the key 

aspects in the pathogenesis and progression of PD. It appears therefore that as neurons 

age the susceptibility to develop PD increases based on reduced autophagy and clearing 

of misfolded proteins such as SNCA. Indeed, mice deficient in the Autophagy-related 

proteins ATG5 and ATG7 show accumulation of ubiquitinated aggregated proteins 

causing neuronal stress and ultimately leading to cell death [53]. Another example is 

illustrated by mitochondrial dysfunction where enlarged mitochondria do not get 

removed by mitophagy [54]. The loss of function of mitophagy is caused by elevated 

ROS levels and decreased lysosomal-autophagic degradation resulting from mutations in 

DJ-1, a protein involved in cellular protection against oxidative stress [55]. Indeed, 

enlarged mitochondria are often observed in PD subjects, possibly resulting from the 

fusion of damaged mitochondria and compromised mitophagy [54]. This enlarged mass is 

not observed in healthy subjects which show a 30% decrease in mitochondrial mass [56]. 

Combined these results point to the importance of autophagy, a regulated and orderly 
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recycling of unnecessary or dysfunctional components of the cell. This process needs to 

be tightly regulated by chaperones and proteins to maintain cellular homeostasis.  

 

1.4. Clinical significance 
 
Despite extensive research in the field the exact processes that contribute to the onset of 

PD is poorly understood. Similarly, there has been no test formulated to correctly 

diagnose PD. This presents a unique opportunity where combining research strategies 

such as cellular assays and miRNA technology may lead to the identification of new 

targets and pathways that could act as potential biomarkers for the identification of PD. 

There is no biochemical test available to accurately diagnose PD, and patients often have 

to visit multiple physicians and perform multiple tests to diagnose [57]. The most 

effective drug to treat PD symptoms is dopamine replacement with Levodopa (L-Dopa), 

which was discovered in the 1960s. This treatment is only effective for a short period of 

time and also has severe side effects such as motor dyskinesia and increased oxidative 

stress caused by metabolites of dopamine [58] . There is a great need to establish novel 

pathways for potential therapeutics and drug design, as well as the development of 

biomarkers for diagnostic purposes as well as monitoring disease progression.  

 

1.5. miRNAs 
 
miRNAs are a class of non-coding RNAs, 22 nucleotides in length, that play important 

roles in gene regulation. Among all regulatory molecules, miRNAs are the most studied, 

particularly as regulators in human diseases [59]. Most miRNAs are transcribed from 

DNA sequences into primary miRNAs (Pri-miRNA) and processed into precursor 
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miRNAs (Pre-miRNAs) and mature miRNAs [60]. Pri-miRNAs are transcribed from 

miRNA-encoding genomic sequences by RNA polymerase II [61, 62], and they are then 

processed into pre-miRNAs by the microprocessor complex, consisting of and RNA 

binding protein DiGeorge syndrome critical region 8 (DGCR8) and ribonuclease III 

enzyme drosha [63]. Once pre-miRNAs are generated they are exported to the cytoplasm 

by exportin 5 and then processed by dicer [63]. This processing involves the removal of 

the terminal loop, resulting in a mature miRNA duplex [64]. The directionality of the 

miRNA strand determines the name of the mature miRNA strand. For instance, the 3p 

strand originates from the 3’ end and the 5p strand originates from the 5’ end of the pre-

miRNA hairpin [65]. miRNAs are proposed to be downregulators of gene expression via 

two mechanisms: A). mRNA cleavage and B). translational repression. Through mRNA 

cleavage the miRNA binds to complementary regions of protein-coding mRNA 

sequences resulting in RNA induced silencing complex (RISC) cleavage [66]. 

Alternatively, and in the absence of appropriate complementarity, miRNAs also have the 

ability to bind to 3’UTRs and block translation [66]. Intriguingly, miRNAs do not solely 

function as target-specific regulators but may play key roles in post-transcriptional 

reduction of expression [67].  

Many studies have noted circulating miRNAs in biological fluids such as plasma, 

serum, cerebrospinal fluid, saliva, and breast milk to name a few [68-71]. These 

extracellular miRNAs are highly stable resisting degradation at room temperature, high or 

low pH, and multiple freeze thaw cycles [72]. Extracellular miRNAs can be either found 

in vesicles such as exosomes and microvesicles [73] or associated with proteins such as 

Argonaute (AGO2) [70]. The presence of miRNAs in vesicles or with proteins is thought 
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to protect miRNAs and increase stability in extracellular fluid [70]. It is now accepted 

that extracellular circulating miRNAs can play important roles in intracellular 

communication also serving as potential biomarkers for disease.  

 

1.6. A-syn 
 
A-syn is primarily expressed in neuronal tissues and is linked genetically and 

neuropathologically to PD. A neuropathological hallmark of PD is the presence of LB 

which are insoluble aggregates enriched in the a-syn protein [74]. The SNCA gene 

encodes for an 140 amino acid protein that does not have a defined structure and whose 

function is not fully understood. In 1997, SNCA became one of the first reported genetic 

aberration linked to PD [26]. The mutation corresponded to substitution in the SNCA, 

resulting in an A53T amino acid change in the a-syn protein [26]. The pattern of 

inheritance was autosomal-dominant and the disease was early-onset, generally around 

the age of 40. Soon after two more autosomal dominant pathogenic SNCA mutations were 

also discovered, A30P and E46K [75, 76]. In 2003, an SNCA triplication event was 

reported, resulting in a two-fold increase in a-syn protein levels, which could ultimately 

lead to development of PD [77].  

A-syn may contribute to PD in multiple ways but it is generally thought that its 

protofibrils are the toxic species that mediate disruption of the cellular homeostasis and 

neuronal death [78]. Furthermore, secreted a-syn may exert deleterious effects on 

neighboring cells including seeding of aggregation, possibly contributing to the 

pathogenesis of PD [79]. Although genetic and biochemical studies are revealing 
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important aspects of a-syn with respect to PD, it is still unclear how changes in SNCA/a-

syn influences disease onset and progression.  

 

1.7. Parkin 
 
Parkin is an E3 ubiquitin ligase which ubiquitinates mitochondrial proteins and targets 

them for proteasomal degradation [30]. Mutations in Parkin cause loss of E3 ligase 

function, and account for the second most common cause of PD [28]. Parkin plays an 

important role in Familial PD due to genetic defects in Parkin causing autosomal 

recessive PD. PINK1 acts upstream of Parkin and is required for Parkin activation and 

recruitment to depolarized mitochondria [80]. Parkin gets selectively recruited to 

damaged mitochondria and brings about ATG5-dependent mitophagy by recruiting 

ubiquitin and p62 to mitochondrial membrane [81]. Parkin overexpression acts as a 

protective agent reducing proteotoxicity in dopaminergic neurons [82]. 

Parkin has also been shown to prevent cell death through proteasomal degradation 

of certain aggregated proteins such as SNCA. The exact mechanism of how over 

expression protects against proteotoxicity is unknown, but it seems to be dependent on its 

E3 ligase activity [83]. Mitochondrial deficits are also very prevalent in Parkin deficient 

patients where decreased lymphocyte mitochondrial complex I is observed [84], and this 

has also been observed in Parkin-knockout mice which show oxidative stress and 

mitochondrial dysfunction [85]. Numerous mutations throughout the PRKN gene are 

linked to autosomal recessive PD which is associated with early-onset PD [86], making 

examination of Parkin crucial to understanding the pathogenesis of PD.  

  



 
 

13 

1.8. ATG5 
 
Autophagy is a highly conserved homeostatic process from yeast to mammals that 

involves degradation of certain intracellular molecules and organelles [87]. Autophagy is 

a tightly regulated process with 41 Autophagy-related proteins [88]. The autophagy 

pathway plays an important role in the pathological process of neurodegenerative 

diseases like PD. Autophagy related gene 5 (ATG5) plays an important role in initiation 

and vacuole formation in autophagy [89]. Knocking down ATG5 can result in 

downregulation or inhibition of autophagy suggesting that ATG5 plays an essential role 

in autophagy, and thus ATG5 is one of the most targeted genes in autophagy gene editing 

assays [90]. ATG5 initiates the formation of the autophagosome membrane and the 

fusion of autophagosomes and lysosomes functioning in both canonical and non-

canonical autophagy. ATG5 has been shown to play a protective role in neurons 

displaying synucleinopathies and ATG5 deficiencies led to deficits in motor function 

with accumulation of cytoplasmic inclusion bodies in the neurons of mice [91]. 

Autophagy is essential to the clearing of misfolded/aggregated proteins, therefore 

disruption in the initiation or any steps can lead to cell death. One finding displayed that 

ATG5 acted as a protective mechanism in zebrafish induced with the compound 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) a mitochondrial toxin [92]. MPTP is 

a standard compound used to establish PD models in vitro and in vivo causing damage to 

dopaminergic neurons [93]. ATG5 downregulation along with treatment impacted the 

progression of PD and PD-related markers, however when ATG5 was overexpressed it 

showed a restorative function and reversed the pathological progress of PD [92].  In 
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patients with PD, ATG5 protein levels were altered, which suggests that ATG5 may 

serve as a PD-related marker and risk factor [94]. 

  

1.9. Ataxin-3 
 
Post-translational modification of proteins is central to regulating stability and activity. 

One important modification involved in cellular homeostasis is ubiquitination which 

involves tagging proteins for degradation [95]. Ataxin-3 (ATXN3) is a deubiquitinating 

enzyme involved in protein quality control and is involved in removing ubiquitin from 

proteins prior to degradation so that the ubiquitin may be recycled [96]. It’s known 

activities include regulating the action of E3 ligases, participating in proteasomal 

substrate delivery, and regulating aggresome formation [97]. Mutations in SCA3, the gene 

encoding ataxin-3 causing repeat expansion causes spinocerebellar ataxia-3 (SCA3), the 

most common inherited ataxia worldwide [98]. PolyQ diseases are age-related, 

progressive disorders that typically first manifest in midlife, leading to death 15-30 years 

later [99]. A common neuropathological hallmark in SCA3 is the accumulation of 

ubiquitin-positive nuclear inclusions in neurons [100]. It has been reported that patients 

with SCA3 have been shown to present parkinsonian symptoms [101]. Recent studies 

have shown that ataxin-3 interacts with Parkin [102] and mutations in ATXN3 can 

deubiquitinate parkin directly and reduce the extent of parkin ubiquitination in cells 

[102]. The poly (Q) expansion mutant form of ataxin-3 promotes parkin degradation by 

autophagy. Ataxin-3 has not been directly linked to PD however its interaction with 

parkin and hinderance of parkin to properly ubiquitinate proteins for degradation has 
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been linked to parkinsonian phenotypes. Thus, a deeper understanding of Ataxin-3 

function and relationship to PD is important in further explaining the pathogenesis of PD.  

  

 
1.10. BAG5 
 
Misfolding, aggregation, and aberrant accumulation of proteins are hallmarks of many 

neurodegenerative diseases including PD. Chaperones and cochaperones help guide and 

execute protein folding as well as shuttling proteins that are destined for degradation 

[103]. The Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone known to act in both 

cell survival and cell death pathways. Bag5 has been shown to interact with HSP70 

molecular chaperone as well as Parkin [104], and this interaction with Parkin hinders its 

function in mitophagy resulting in cell death [105]. It has been shown that BAG5 delays 

parkin recruitment to mitochondria following mitochondrial depolarization, therefore 

impairing mitophagy and enhancing cell death [105]. The mechanism by which BAG5 

impedes Parkin recruitment to mitochondria is not clear however and is in direct 

contradiction to Bag2 which enhances Parkin’s recruitment to mitochondria [104]. It has 

been reported that physiological stress increases BAG5 expression [106] however 

conflicting evidence has shown that BAG5 can either play a neuroprotective role as well 

as a neurotoxic role.  

BAG5 has been demonstrated to directly interact with PINK1, and regulated 

PINK1 degradation via the UPS, and in addition protected mitochondria against MPP+ 

[107]. These findings suggested that BAG5 played an important role in stabilizing PINK1 

by decreasing the ubiquitination of PINK1. Upregulation of BAG5 has also been shown 

to inhibit apoptosis and increase expression of anti-apoptotic proteins in PC12 cells 
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induced with MPP+ an apoptosis inducer [108]. Lastly, BAG5 has also been shown to 

interact with DJ-1 and reduces the level of DJ-1 dimers in the mitochondria, which 

suggests that BAG5 inhibits mitochondrial translocation of DJ-1 [109]. The role BAG5 

plays in neurodegeneration is yet to be revealed due to conflicting evidence of its role 

within the cell.  
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2.0. Specific aims 

The primary objective of this research is to achieve a deeper understanding of pathways 

that contribute to neuronal cell death in PD, examine the relationship between PD-related 

proteins, and discover the involvement of miRNAs in PD.  

Specific aims include: 

1.  Evaluate and verify specific protein targets of miRNA candidates involved in PD. 

2. Investigate what role miR-335-5p and miR-3613-3p play in the regulation of key 

PD related proteins. 

3. Examine whether elevated levels of miRs in PD patients play a neuroprotective or 

neurotoxic role in neurons. 

4. Investigate the regulation of ATG5, ATXN3, and BAG5 by miR-335-5p and 

miR-3613-3p, and how they relate to PD pathogenesis. 
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2.1. Materials and Methods 

Buffers 
 
Universal buffers and their composition used in various protocols are listed below. 

Specific buffers are described together with the specific protocols. 

 

Lysis buffers 

The recipes for the lysis buffers used during this dissertation are given here.  

Following is the list of protein localization and lysis buffer used:  

Protein Localization   Buffer recommended 
Whole cell    NP-40 or RIPA 
Cytoplasmic (soluble)   Tris-HCl 
Cytoplasmic (cytoskeletal   Tris-Triton 
Bound) 
Membrane bound   NP-40 or RIPA 
Nuclear    RIPA 
Mitochondria    RIPA 
Please consult separate protocols for sub-cellular fractionation. 
 
Nonidet-P40 (NP40) buffer 

150mM NaCl, 1% NP-40, 50mM Tris at pH8.0, and 2mM EDTA 

 

Radio Immuno Precipitation Assay buffer (RIPA) 

150mM NaCl, 1% NP-40, 50mM Tris at pH 8.0, 0.5% Sodium deoxycholate, and 0.1% 

Sodium  

Dodecyl sulfate (SDS). 

 
Tris-HCl buffer 

20mM Tris-HCl, pH 7.5 
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Tris-Triton buffer 

100mM NaCl, 1% Triton X-100, 10mM Tris at pH 7.4, 0.5% Sodium deoxycholate, 0.1% 

SDS,  

10% Glycerol, 10mM EDTA, and 10mM EGTA. 

 

Western Blot analysis buffers  

The recipes for buffers used for western blot analysis including buffers required for 

pouring  

Polyacrylamide gels are listed below. 

 
Table 1.1. SDS Polyacrylamide gel recipe  
   

Component Stacking gel 
Resolving 
gels       

  4% 8% 12% 15% 20% 

Deionized water (DIW) 6.15ml 4.73ml 3.4ml 2.4ml 730ul 

30% Acrylamide 1.25ml 2.67ml 4ml 5ml 6.67ml 

1.5M Tris Buffer pH 8.8  -  2.5ml 2.5ml 2.5ml 2.5ml 

0.5M Tris Buffer pH 6.8 2.5ml  -    -  -  - 

10% SDS 100ul 100ul 100ul 100ul 100ul 

10% APS  50ul 50ul 50ul 50ul 50ul 

TEMED 10ul 5ul 5ul 5ul 5ul 

                   
30% Acrylamide solution is 29.2% acrylamide and 0.8% N’,N’-bis-methylene-

acrylamide. 

 

Tris Buffer (1.5M at pH 8.8, 0.5M at pH 6.8) 

Tris base 54.46g and 18.15g was dissolved in DIW; pH was adjusted with 6N HCl to 8.8 

and 6.8  

Respectively to make up the volume to 300ml with DIW. 
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Running buffer (10X) and Transfer buffer (10X) 

Stock solutions (10X) for running and transfer buffers were prepared with 3.84M Glycine 

and  

0.5M tris base. For running buffer 2% SDS was added. 

 

Tris Buffer Saline (TBS) (10X) 

TBS stock solution (10X) was prepared by dissolving 160.1g NaCl and 48.45g tris-HCl; 

pH was  

adjusted to 7.6 with HCl to make a 2L stock solution. 

 

For TBS-T: 100ml of TBS (10X) + 900ml ultra-pure water + 1ml Tween20 

 
Bacteriological Techniques 
 
Bacterial Strains 

E.coli DH5; (FS/endA1 hsdR17(rkSmk+), supE44, thi1, recA1, gyrA(Nalr),  
gyrA96(Nalr), 

relA1, Δ(lacZYA=argF) U169, deoR (Φ80dlac Δ(lacZ) M15)) was used For propagation 
and  

preparation of plasmid DNA. 
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Vectors 

pJET 1.2/blunt (Appendix. A) (Thermo Fischer Scientific) was used for routine 
subcloning and  

DNA manipulations.  

pcDNA3 (Appendix A-) (Thermo Fischer Scientific) was used for heterologous protein  

expression and stable cell line generation in mammalian cells. 

 

Growth media and growth conditions  

Bacteria were grown using Lysogeny broth (LB-1% Tryptone, 0.5% Yeast extract, and 
1%  

NaCl) in liquid cultures or LB-agar (1.5% agar added to LB) as colonies. Super optimal 
broth  

With catabolite repression (SOC – 2% Tryptone, 0.5% Yeast extract, 0.02% KCl, 0.25% 
MgSO4  

and 0.06% NaCl, and 036% Glucose; pH 7.0) was used during transformation for 

recovery of transformants. Liquid cultures for DH5 were grown in a shaking incubator 

at 250rpm at 37C. Colonies were grown on LB-agar plates incubated overnight (O/N) in 

an incubator at 37C. Colonies were picked using sterile pipette tips and added to culture 

tubes for growing liquid cultures with antibiotic selection. 

Antibiotic Selection 

Antibiotic selection was carried out to select colonies ad grow cultures of positive clones. 

Antibiotics were added to medium prior to use (LB) or before pouring plates (LB-agar). 

Ampicillin (100g/ml) was used as selection marker for pJET 1.2/blunt, pcDNA3 

vectors; Kanamycin (50g/ml) was used for pET-28a(+) vector. 
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Cloning 

Primers 

Primers used for various cloning experiments as well as semi-quantitative PCR and qRT-

PCR experiments are listed below (Table). Restriction endonuclease cutting sites are 

underlined and in italics, and mutations are in bold/codon is underlined, if applicable. 

Table 1.2. List of Primers 

No. Name of Primer (RE site/Tag) Sequence with RE site & Tag 

      

1)  pcDNA3 forward (100bp MCS) CGCAAATGGGCGGTAGGCGTGTACG 

2) pcDNA3 reverse (MCS100bp) TGGCACCTTCCAGGGTCAAGGAAGG 

3) pJET1.2 forward (_MCS) CGACTCACTATAGGGAGAGCGGC 

4) pJET1.2 reverse (MCS_) AAGAACATCGATTTTCCATGGCAG 

5) scaRNA17 forward AGAGGCTTGGGCCGCCGAGC 

6) RNA U6 forward CGCTTCGGCAGCACATATAC 

7) cel-miR-39-3p forward ATTCACCGGGTGTAAATCAGC 

8) hsa-miR-335-5p forward ATTCAAGAGCAATAACGAAAAATGT 

9) hsa-miR-3613-3p forward ATACAAAAAAAAAAGCCCAACC 

10) hsa-miR-6865-3p forward ATACACCCTCTTTCCCTACC 

11) hsa-miR-4797-5p forward ATGACAGAGTGCCACTTACTG 

12) hsa-miR-455-3p forward ATGCAGTCCATGGGCATATAC 

13) hsa-miR-3910-1 forward ATTGCTGTCAGTTTTTCTGTTGC  

14) hsa-miR-16-2-3p forward ATCCAATATTACTGTGCTGC  

15) hsa-miR-937-5p forward ATGTGAGTCAGGGTGGGGC  
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Polymerase Chain Reaction (PCR)  

PCR was performed to amplify genes of interest from cDNA, and to screen for colonies 

of positive transformants by colony PCR.  

PCR to amplify genes for subsequent cloning: 

Phusion DNA polymerase (Thermo Fischer Scientific) was used to amplify genes or 

gene products due to its high-fidelity and to get accurate, blunt ended PCR products 

which were first used for cloning into the shuttle vector pJET 1.2 vector. 

PCR reactions were setup as follows: 

Component 1x reaction (μl) 

    

5x Phusion HF buffer 4 

10mM dNTPs 0.2 

Phusion DNA Polymerase 0.2 

Forward primer 1 

Reverse Primer 1 

Vector  1 

DIW 12 

Reactions were setup with the following program: 

Step Temp. (ºC) Time 

1 98 1min. 

2 98 30sec. 

3 49 30sec. 

4 72 
30sec/kb of PCR 
product 

5 
Goto step 2, 
30x  

6 72 7min 

7 4 Forever 
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PCR to screen for bacterial colonies 

Taq PCR Master mix kit (Qiagen, Inc.) was used to perform colony PCR for screening 

positive transformants. Colonies were grown on LB-agar were picked using sterile pipette 

tips and added to culture tubes with LB media and appropriate antibiotic selection. 

Cultures were grown O/N at 37C in an incubator at 250rpm. 1l of liquid culture was 

used as template in each PCR. Specific primer pairs (Table) were used to either confirm 

the presence and/or orientation of gene product. The reactions were setup as follows: 

Component 1x reaction (μl) 

PCR Master Mix (2X) 10 

Forward Primer 1 

Reverse Primer 1 

Cultures/colony 1 

DIW 7 

Reactions were setup with the following program: 

Step Temp. (ºC) Time 

1 95 2min. 

2 94 1min. 

3 58 1min. 

4 72 1min. 

5 
Goto step 2, 
34x  

6 72 5min. 

7 4 Forever 
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Nucleic acid isolations 

All DNA isolations were performed using commercial kits following manufacturer’s 

protocol. GeneJET plasmid miniprep kit (Thermo Fischer Scientific) was used for small 

scale routine isolation of plasmid DNA. QIAquick PCR purification kit (Qiagen) was 

used to clean up the PCR product to remove components of the PCR mix to obtain 

purified DNA product for further experiments. GeneJET Gel Extraction kit (Thermo 

Fischer Scientific) was used to clean up the PCR product to remove primer dimers, and 

other non-specific DNA bands. 

Nucleic acid measurement 

Nucleic acid in the form of plasmid DNA, genomic DNA, and cDNA were always, at 

various stages, ran on agarose gels or NanoDrop 2000 Fluorospectrometer (Thermo 

Fischer Scientific) for quality control (QC) purpose.  

Nucleic acid manipulation 

pJET cloning 

All genes were first cloned by blunt end cloning into the pJET 1.2 vector using the 

CloneJET PCR cloning kit (Thermo Fischer Scientific) according to the manufacturer’s 

protocol. Ligated products were transformed into E. coli DH5- cells and colonies were 

grown under ampicillin selection, and screened for positive transformants using 

ampicillin selection.  

  



 
 

26 

Restriction endonuclease digestions 

Restriction endonuclease digests were performed as follows: 

Component (per 
reaction) 

(μl) 

 Water (Nuclease free) 3 

10X FastDigest buffer 1 

DNA 5 

Enzyme 1 0.5 

Enzyme 2 0.5 

Time 30min Temp 37℃ 
 

Vector Restriction 
Endonuclease 

pJET 1.2 BgIII (2 sites) 

    

pcDNA3 
RE flanking the 
gene 

  of interest 
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Ligations 

Ligation (Thermo Fischer Scientific) reactions were setup as follows: 

Component (μl) 

Digested insert 8 
Digested Vector (10-
50ng) 0.5 

T4 DNA ligase 0.5 

10X T4 DNA ligase buffer 1 

Nuclease free water 0 

Total 10 

Ligation mix was incubated at RT for 20-30mins. Ligation mix was used for 

transformations. 

Bacterial Transformations 

DH5- cells were thawed on ice and typically 5l of the ligation reaction was added to 

the cells. The transformation mix was incubated on ice for 30min. At the end of the 

incubation, cells were subjected to heat shock at 42C for 45sec. Immediately followed 

by incubation on ice for 2-3min. 900l SOC or LB media was then added to the cells and 

the cells were incubated at 37C for 1hr with shaking. Cells were plated onto appropriate 

LB-agar plates (antibiotic selection). The LB-agar plates were incubated at 37C for at 

least 16hrs but no more than 20hrs.  
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Characterization of bacterial transformants 

Bacterial transformants were generally analyzed by two methods mentioned below. 

Positively transformed colonies were verified by DNA sequencing at the Yale DNA 

analysis facility, CT. The sequencing data was analyzed using BLAST by NCBI. 

Colony PCR for colony screening 

1l of O/N liquid bacterial culture were used for PCR reactions and the remaining was 

used for subsequent DNA isolation. PCR reactions were setup using the Taq PCR Master 

Mix Kit (Qiagen) and the primer pairs either flanking the MCS in vector, Flanking the 

gene of interest or one internal primer along with vector specific primer. Samples were 

run on a 1% agarose gel and colonies that gave the correct sized DNA fragment was used 

for further analysis.  

Agarose gel electrophoresis 

PCR products or restriction digests were analyzed on 1% agarose gel electrophoresis. The 

products were mixed with loading buffer (6X Loading buffer. 30% glycerol, 0.25% 

bromophenol blue) and ethidium bromide in order to visualize the separated DNA 

fragments on a UV transluminator. Tris-acetate-EDTA buffer was used to make the gels 

and also running buffer. The gels were prepared by adding the appropriate amount of 

agarose to 1X TAE buffer (40mM Tris base, 20mM Glacial acetic acid, and 1mM EDTA 

at pH 8.0) followed by melting the agarose by heating in a microwave oven, adding 

ethidum bromide, pouring into a gel cassette and allowing agarose gel to solidify. HiLo 

DNA marker (Minnesota Molecular) was used as a size reference (Appendix). 
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RNA processing and analysis 

RNA isolation 

Total RNA was extracted using specialized kits following the manufacturer’s protocol. 

All the RNA samples were quantified and quality controlled on a Nanodrop 2000 

(Thermo Scientific, MA). 

RNA isolation (mRNA from mammalian cells) 

All RNA isolations were performed 24hrs post-transfection or from stable cells in 

triplicate. Total RNA was extracted from mammalian cells by using the RNeasy Mini kit 

(Qiagen) and GeneJET RNA purification kit following manufacturer’s protocol. Total 

RNA (enriched small RNA) was isolated using the miRCURY RNA isolation kit- cell 

and plant (Exiqon). 

RNA isolation (Small RNA from mammalian cells) 

All RNA isolations were performed 24hrs post-transfection in triplicate. Total RNA was 

extracted from mammalian cells using the miRCURY RNA isolation kit – cell and plant 

(Exiqon) following manufacturer’s protocol.  

  



 
 

30 

cDNA synthesis 

All RNA samples were treated with 1 unit/g of RNA of DNase-1 (Thermo Scientific) 

for 30min at 37C followed by 10min at 65C with 50mM EDTA. The DNase 1-treated 

RNA was used to synthesize first strand cDNA using a variety of commercial kits. 

cDNA synthesis (from mRNAs) 

The DNase 1-treated RNA was used to synthesize first-strand cDNA, by using the 

RevertAid First Strand cDNA Synthesis kit and an oligo dT primer (Thermo Fischer 

Scientific) following the manufacturer’s instructions. The cDNA samples were used for 

PCR amplifications of genes of interest for cloning, semi-qualitative PCR, and qRT-PCR. 

cDNA synthesis (From small RNAs) 

For small RNAs, cDNA was synthesized using DNase 1-treated RNA and the qScript 

miRNA cDNA synthesis kit (Quanta Biosciences) following manufacturer’s protocol. 

The cDNA samples were used for semi-quantitative PCR and qRT-PCR. 

  



 
 

31 

Reactions were setup as follows in two steps: 

Poly(A) Tailing reaction 

Component Per reaction (uL) 

Poly(A) Tailing Buffer 
(5X) 

2 

RNA (up to 1ug total) up to 7uL 

Nuclease free water Variable 

Poly(A) Polymerase 1 

Mix components from above and incubate at 37C for 60mins followed by 5mins at 

70C. Centrifuge and keep on ice for cDNA synthesis. 

First strand cDNA synthesis reaction 

Component Per reaction (uL) 

Poly(A) tailing reaction 
(from previous step) 

10 

microRNA cDNA 
Reaction Mix 

9 

qScript Reverse 
Transcriptase 

1 

Incubate reaction mix for 20mins at 42C followed by 5mins at 85C, and allow to 

gradually come down to 4C. Store at -20C for future expression analysis.  
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Semi-quantitative RT-PCR (mRNA and small RNAs) 

cDNA was used for semi-quantitative RT-PCR using appropriate primer pairs (Table) 

and PCR protocol for 25 cycles. The samples at the end of the reactions were run on 1% 

agarose (for mRNAs). The gel images were analyzed at the end, to semi-quantitatavely 

measure gene expression. GAPDH (mRNAs) and U6 (small RNAs) were used as controls 

in all the semi-quantitative RT-PCR experiments. 

Real-time qPCR 

Equal amount of cDNA in each sample was used to perform qRT-PCR. All qRT-PCR 

were performed using PerfeCTa SYBR GREEN SuperMix for IQ containing 

AccuStart Taq DNA polymerase (Quanta Biosciences) for 45 cycles followed by 

dissociation steps with a MyiQ single color Real-time PCR detection system (Bio-Rad, 

CA). No template control (NTC) was employed.  

Reaction was setup as follows: 

Component Per reaction (uL) 

PerfeCTa SYBR Green 
Supermix (2X) 

25 

PerfeCTa microRNA 
Assay Primer (10uM) 

1 

PerfeCTa Universal PCR 
Primer (10uM) 

1 

Nuclease Free water 23 
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Real-time qPCR (mRNA) 

For mRNA qRT-PCR, gene specific primers, at a concentration of 1uM were used. The 

qRT-PCR protocol was as follows: Intial denaturation at 95C for 2mins followed by 35 

cycles of denaturation at 95C for 15s, annealing at 60C for 45s and extension at 72C 

for 40s. GAPDH or Actin was used as reference RNAs for normalizing Cq values to 

calculate relative expression. 

Real-time PCR (Small RNA) 

qRT-PCR for small RNA quantification were performed with reaction volume of 20l 

with small RNA-specific forward primers and a PerfeCTa Universal PCR primer at a 

final concentration of 0.2uM. The qRT-PCR protocol involved initial denaturation at 

95C for 2min followed by 45 cycles of denaturation at 95C for 15s, annealing at 60C 

for 30s and extension at 72C for 15s, which was followed by dissociation steps of 0.5C 

increments. scaRNA and U6 were used as reference small RNAs for normalizing Cq 

values whereas cel-miR-39-3p was used as spike-in control. The standard curve for cel-

miR-39-3p was anaylzed in MS excel with R2 = 0.97882 and PCR efficiency 92.96%. 
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Tissue culture and processing 

Tissue culture guidelines: 

Table 1.3 Tissue Culture Guidelines 

 

Conversion chart used for tissue culture experiments. Invitrogen.  

Cell culture and stock information 

Sh-SY5Y cells were cultured in a base medium (1:1 mixture of DMEM/Ham’s-F12) 

(Invitrogen) supplemented with fetal bovine serum (FBS) (Atlanta biologics) at a final 

concentration of 10% and 2mM GlutaMax (Invitrogen) in a 5% CO2 atmosphere at 37C. 

BE-M17 cells were maintained in the same way. Cells were sub-cultured every 4-5 days 
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to maintain confluency. Full medium supplemented with 5% DMSO was used as freezing 

medium to cryopreserve cells. 

Transfections 

The transfection experiments were performed the day after seeding, for each plasmid 

transfection, 0.5g plasmid DNA was diluted with 50l Opti-MEM (Life technologies, 

Grand Island, NY) and 1.25l Lipofectamine 2000 (Invitrogen) was diluted with 50l of 

Opti-MEM and incubated for 5min at RT. After incubation both solutions were mixed 

and incubated for 15mins at RT. This transfection mix was diluted to 2ml with Opti-

MEM and added to cells for transfection. Cells were incubated at 37C in 5% CO2 

atmosphere for 4-6hrs. before replacing with full media. Appropriate empty vector 

controls were used with each transfection experiment. The cells were used 24hr (RNA) 

and 48hr (Protein) after transfection  and incubation for downstream processing. 

Transfection (miRs) 

The day after seeding cells were transfected using scrambled control mimic/inhibitor and 

mimic/inhibitor of miR-335-5p, miR-3613-3p, and miR6865-5p obtained from 

mirVana (Life Technologies), at a final concentration of 20nM. 2l of each RNA 

(20M stock), was diluted with 100l of Opti-MEM and 7l of Lipofectamine RNAiMax 

(Invitrogen) was diluted with 100l of Opti-MEM and incubated for 5min at RT. The two 

solutions were then mixed together and incubated for 15min at RT. The transfection mix 

was diluted to 2ml with Opti-MEM, added to the cells and incubated at 37C in 5% CO2 

atmosphere for 4-6hrs before replacing with full media. Cells were harvested after 24hr 
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for transcript analysis by qRT-PCR and after 48hr for protein analysis by Western 

Blotting. 

Cell Treatments 

All treatments were performed in serum-free complete media at 37C for 6hr, unless 

indicated otherwise. Untreated cells were maintained in serum-free complete media at 

37C for 6hr as well. Various reagents used for treatments are given in the table below. 

Table 1.4. Cellular Treatments 

Reagent Concentrations used  Supplier 

H2O2 100μM J.T. Baker, Center 
Valley, PA 

L-3,4-dihydroxy-
phenylalanine (L-DOPA) 

100μM Acros, Pittsburgh, PA 

Rotenone 1μM, 10μM, 50μM Sigma Aldrich 

6 hydroxydopamine (6-
OHDA) 

1μM, 10μM, 100μM Sigma Aldrich 

Cell Harvesting 

Cells growing at 85-90% confluency were trypsinized and removed from the plate. Cell 

suspension was spun down by centrifugation at 500xg at 4C for 5min, supernatant was 

discarded and cells were washed with 1ml ice cold PBS and spun down again. 

Supernatant was discarded and lysis buffer (RIPA) was added to cell pellet, pipetting up 

and down to break up the pellet. Centrifuge tube was kept on ice for 10mins, followed by 
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a spin at max speed (25,000xg) for 10min. Supernatant was collected and placed in 

another labeled centrifuge tube and kept at    -20C for future processes. 

Protein analysis 

Western blot analysis 

Western blot analysis was performed using the following protocol: 

Sample preparation: Protein lysates were always thawed on ice and 5x reducing dye was 

added to samples followed by boiling at 95C for 5min. Samples were than cooled on ice 

for 1min, and subjected to quick centrifugation to collect condensate.  

SDS-PAGE and Blotting: Whole cell lysates were generally prepared using RIPA buffer. 

Protein estimation was performed using the DC Protein assay kit (Bio-Rad, Hercules CA) 

showing <10% variation in protein concentrations among the same fractions. 4l of 5x 

Laemmli sample buffer (50mM Tris pH 6.8, 0.1% SDS, 20% glycerol, 0.2% 

bromophenol blue) with BME was added to 16l of whole-cell lysates. Samples (20l) 

were subjected to SDS-PAGE by using the mini-Protein Tetra system (Bio-Rad) with 

12% polyacrylamide slab gels at 100V for 90min in running buffer (192mM glycine, 

25mM Tris Base, 0.2% SDS). The separated proteins were transferred to PVDF 

membranes (Pall Life Sciences, Ann Arbor, MI) in transfer buffer (192mM glycine, 

25mM Tris Base, 20% methanol, and 0.005% SDS) at 200mA for 45min, followed by 

blocking in 5% nonfat dry milk/TBS-T (137mM NaCl, 15.4 mM Trizma HCl, 0.1% 

Tween 20, pH 7.6) for 1 hour at RT. After blocking the membrane was incubated with 

the appropriate primary antibody at 1:1000 dilution (unless otherwise indicated) in 2.5% 
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nonft dry milk overnight at 4C and washed with TBS-T three times for 10min. After 

wash appropriate secondary antibody (Jackson Immunoresearch, West Grove, PA) at 

1:10,000 dilution for 1hr at RT. The membrane was washed with TBS-T three times for 

10min each. The membrane was developed using the Pierce ECL Western blot substrate 

(Therno Fischer Scientific) and signal detection was recorded with the molecular imager 

Chemi Doc XRS1 imaging system (Bio-Rad). PageRuler Unstained Broad Range 

Protein Ladder, which has each protein containing an integral Strep-tag II Sequence, was 

used as a marker for all the gels and blots. 

Table 1.5. List of Primary and Secondary antibodies 

  

Antibody (Dilution used 1:1000 for 
primary and 1:10000 used for 
secondary 

Vendor 

  Primary Antibodies   

1) Rabbit polyclonal anti-GAPDH Santa Cruz Biotechnology 

2) Mouse monoclonal anti-PARKIN Santa Cruz Biotechnology 

3) Rabbit polyclonal anti-ATXN3 Abcam 

4) Mouse polyclonal anti-BAG5 Santa Cruz Biotechnology 

5) Rabbit polyclonal anti-ATG5 Santa Cruz Biotechnology 

6) Rabbit polyclonal anti-SOD1 Santa Cruz Biotechnology 

7) Rabbit polyclonal anti-GBA Santa Cruz Biotechnology 

8) Goat polyclonal anti-Park13 Santa Cruz Biotechnology 

9) Rabbit polyclonal anti-SNCA Abcam 

10) Rabbit polyclonal anti-LRRK2 Abcam 

11) Rabbit polyclonal anti-PINK1 Novus Biologicals 

12) Mouse monoclonal anti-DJ-1 Enzo Life Sciences 

13) Mouse monoclonal anti-Actin Santa Cruz Biotechnology 

  Secondary Antibodies   

1) Goat anti-Rabbit IgG (H+L)-HRP Jackson Immunoresearch 

2) Donkey anti-Goat IgG (H+L)-HRP Jackson Immunoresearch 

3) Goat anti-Mouse IgG (H+L)-HRP Jackson Immunoresearch 

4) Precision Protein StrepTactin-HRP Bio-Rad 
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Cell Viability assay 

Cell viability was measured using the neutral red uptake assay 48hr post transfection. 

Cells were washed with PBS, 100l of neutral red working solution (40g/ml) added to 

each well and plates were incubated for 2hr. Cells were then washed with PBS, neutral 

red extracted using 150l of destain solution (50% ethanol, 1% glacial acetic acid, 49% 

deionized water) per well and the plates were subjected to shaking for 10min. 

Absorbance was measured at 540nm using an Epoch microplate spectrophotometer 

(Bioteck)  

Breadford assay for protein estimation 

Protein concentrations were measured using protein assay kit II and DC protein assay kit 

(Bio-Rad, Hercules, CA) Bovine serum albumin was used to prepare incremental 

standard solutions from 0.05-1.0mg/ml. Assays were performed in 96-well micro-plates 

and the colormetric reading were recorded using Epoch microplate spectrophotometer 

(Bioteck). Protein samples were diluted from 1:10 to 1:100 for the assay. Samples for 

loading were prepared based on the concentrations obtained by the assay. 

Image analysis and statistical analysis 

ImageJ software (NIH, Bethesda, MA) and IQTL software (GE healthcare) was used to 
analyze  

Western blot as well as agarose gel images. All values represent mean values ± Standard 
error  
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unless indicated. Statistical analyses were performed using Microsoft excel unless 
otherwise  

mentioned, with students’ t-test, and p<0.05 is denoted as significant, unless mentioned 

 otherwise. 
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Main Project: microRNA regulation of key PD proteins 

Introduction 

PD is the most common, progressive neurodegenerative movement disorder 

characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars 

compacta (SNpc) [110]. The etiology of PD has been linked to age, environmental 

factors, and mutations in several genes including SNCA, Parkin, and PINK1 [111]. 

Aggregation of misfolded proteins causing inclusion bodies is a hallmark of PD [112]. 

The presence of LBs enriched in the protein a-syn plays a major role in neuronal cell 

death enhancing the progression of Parkinson’s like neurodegeneration [113, 114]. The 

E3 ubiquitin ligase Parkin plays a prominent role in both familial and sporadic PD, 

although Parkin is neuroprotective and promotes neuronal cell survival its loss of 

function causes mitochondrial dysfunction[115, 116]. Parkin, along with its associated 

molecular chaperone HSP70, are found in LBs in sporadic PD [117]. BAG5 (bcl-2-

associated athanogene 5) is a member of the BAG family and has been shown to form a 

complex with HSP70 [118], and interact with Parkin. This interaction has deleterious 

functional consequences by inhibiting HSP70 chaperone activity and Parkin E-3 Ligase 

activity causing an influx of protein aggregation [119].  

Non-coding RNAs are involved in many regulatory cellular processes and make 

up a significant portion of our genome. miRNAs are small non-coding RNAs which are 

20-22 nucleotides in length and function in gene regulation and silencing [120]. miRNAs 

have also been extensively studied as potential biomarkers due to their extracellular 

stability and altered disease state expression [121] A recent study highlighted the 

differences in miRNA levels from PD and non-diseased brains stating that miRNAs are 
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differentially expressed in patients with PD allowing for classification of PD within a 5% 

error [122]. While this is taking a potential diagnostic approach there have been studies 

which show regulatory effects of miRNAs in PD. One specific study showed the 

regulatory effects of miR-34b/c on the key Parkinson’s proteins Parkin and DJ-1 causing 

loss in cell viability [123]. A considerable number of miRNAs have been reported for 

their regulatory roles in PD [124]. We investigated miR-335-5p and miR-3613-3p which 

have been associated with an array of diseases from cancer to gestational diabetes, 

however there are no studies to date that show the relationship between miR-335-5p and 

miR-3613-3p and PD.  

In this study we show that miR-335-5p and miR-3613-3p levels are significantly 

elevated in PD patients as compared to healthy individuals which further corroborated 

our previous findings [125]. This increase in miRNA expression was also prevalent in 

post-mortem frontal cortext samples for both PD and age-matched controls. We further 

report that miR-335-5p and miR-3613-3p overexpression may have a neuroprotective 

function as it increases cell viability in SH-SY5Y cells induced with oxidative stress. We 

also show that oxidative stress causes miR-335-5p and miR-3613-3p overexpression not 

seen under normal, non-stressed conditions. This increase leads to increased levels of 

ATG5 and BAG5 whilst decreasing levels of ATXN3. 
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Results 
 

miR-335-5p and miR-3613-3p show upregulated expression in post-mortem PD 
brains 
 
 
In our previously reported longitudinal study we identified, verified and validated miR-

335-5p, miR-3613-3p, miR-6865-3p as differentially expressed in 370 PD (drug-naïve) 

and control serum samples from the Norwegian ParkWest study and in 64 PD (drug-

naïve) and control serum samples from NY Parkinsonism in UMeå (NYPUM) study 

[125]. We further showed that that miR-335-5p, miR-3613-3p, miR-6865-3p 

(PARKmiRs), and any two combinations of the PARKmiRs, were robust classifiers of 

PD at baseline diagnosis [125].To expand on these findings and to gain insight into 

whether the increased miRNA levels in serum may reflect changes in brain miR profiles 

we isolated small RNAs from post-mortem frontal cortex brain samples of PD patients 

and age matched healthy control individuals. RNA isolation was performed on 9 PD 

brains and 6 age matched control brain samples, and expression levels were measured 

using a SYBR Green-based quantitative reverse-transcriptase polymerase chain reaction 

(qRT-PCR) assay. scaRNA17 was used as a small RNA reference for normalizing the 

qRT-PCR Cq values and cel-miR-39-3p was used as a spike-in control. The spike in 

control was included to ensure that recovery of small RNA was consistent across the 

samples. The results from the qRT-PCR assay revealed that both miR-335-5p and hsa-

miR-3613-3p levels were significantly upregulated in PD brains (Fig.1) compared to 

healthy age matched controls. We also tested six other PARKmiRs discovered in our 

previous study [121] revealing that hsa-miR-6865-3p was also significantly upregulated 

in PD brain samples, however for this study we will only focus on miR-335-5p and miR-
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3613-3p. The finding that miR-335-5p and miR-3613-3p levels are elevated in frontal 

cortex brain samples of PD patients, complements our previous data showing elevated 

PARKmiRs levels in PD serum, possibly suggesting a mode of miR release into serum 

from the brain.  

 

Figure 1.1 Upregulation of PARKmiRs in brain samples. qRT-PCR comparison of 

post-mortem frontal cortext brain samples of Parkinson’s patients and healthy age-

matched controls showing significant upregulation of PARKmiRs hsa-miR-335-5p, hsa-

miR-3613-3p, and hsa-miR-6865-3p in PD brain samples compared to control. All above 

(n=4), * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Overexpression of miR-335-5p and miR-3613-3p increase cell viability in response 

to oxidative stress 

 
To investigate whether overexpression of miR-335-5p and miR-3613-3p has any 

significant effect on cell viability we performed a neutral red assay on SH-SY5Y cells 

overexpressing the two PARKmiRs, independently. To impose stress on the SH-SY5Y 

cells we also treated cells with 100µM H2O2 and 100µM L-Dopa for six hours followed 

by the neutral red assay. We observed no change in cell viability in SH-SY5Y cells 

overexpressing a control mimic or the miR-335-5p and miR-3613-3p mimics (miR-335M 

and miR3613M) in untreated cells as expected (Figure 2A). However, after six hours of 

treatment with 100µM H2O2 we observed a significant loss in viability in cells expressing 

the control mimic (Figure 2A). Interestingly, cells overexpressing miR-335-5p and miR-

3613-3p showed a significant rescue in cell viability as compared to the control mimic 

expressing cells suggesting that both PARKmiRs may have a possible protective role 

(Figure 2A). A similar result was also observed in response to 100µM L-Dopa treatment 

(Figure 2A) suggesting that both PARKmiRs have a protective effect in response to 

oxidative stress, either directly by H2O2 treatment or indirectly in response to L-Dopa 

exposure.  

This observed protective effects of both miR-335-5p and miR-3613-3p on SH-

SY5Y cells, in response to oxidative stress, may explain the elevated levels of both 

PARKmiRs in PD serum [121] and PD brain samples (Figure 1). These elevated levels of 

both PARKmiRs may indeed contribute to mitigating neurodegeneration in PD. To 

further dissect this possibility, we first exposed wild-type SH-SY5Y cells to H2O2 and L-
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Dopa in a dose dependent manner for six hours followed by cell viability analysis. We 

observed, as expected, a progressive loss in cell viability with increasing concentration of 

both H2O2 and L-Dopa (Figure 2B). We then performed qRT-PCR on the wild-type SH-

SY5Y cells exposed to 100µM H2O2 and 100µM L-Dopa for six hours, which showed 

that both endogenous PARKmiRs are significantly upregulated in response to oxidative 

stress as compared to untreated cells (Figure 2C). Combined these results suggest that the 

elevated levels of miR-335-5p and miR-3613-3p in PD brains and PD serum may 

positively contribute to a neuroprotective pathway in PD.  
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Figure 2.1 PARKmiRs significantly increase cell viability in response to oxidative 
stress. 
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Neutral red assay and fluorescence image analysis showing significant increase in cell 

viability in response to H2O2 and L-Dopa treatments in cells overexpressed with miRs. 

(A) miR-335-5p and miR-3613-3p mimic overexpression shows significant rescue in cell 

viability for SH-SY5Y cells treated with 100M H2O2 or 100M L-Dopa. (B) Dose-

dependent curve of control SH-SY5Y cells treated with H2O2 and L-Dopa showing 

increased loss in cell viability with increasing concentrations of treatments. (C) qRT-PCR 

expression of miR-335-5p and miR-3613-3p respectively showing significant increase in 

expression in response to H2O2 and L-Dopa treatments. All above (n=4), * p < 0.05; ** p 

< 0.01; *** p < 0.001. 

 

Increased expression of miR-335-5p and miR-3613-3p has neuroprotective effects 

 
As a hallmark of PD onset is the aggregation of a-syn and progression is directly 

associated with missense mutations, duplication and triplication events in the a-syn 

encoding gene SNCA  [26] we wanted to more fully understand how miR-335-5p and 

miR-3613-3p function in a neurotoxic environment similar to that observed in PD. To 

this end we created SH-SY5Y cell lines that overexpressed wild-type a-syn triplication 

mutation and the two clinical a-syn variants a-syn-A53T and a-syn-E46K point mutations 

[76, 77]. To confirm overexpression of wild-type a-syn, a-syn-A53T and a-syn-E46K in 

our stable SH-SY5Y cell models we performed western blot analysis using a monoclonal 

anti-a-syn antibody. The western blot analysis showed that all three cell lines 

overexpressed a-syn, a-syn-A53T and a-syn-E46K to a similar level showing significant 

overexpression of the 14kDa a-syn monomer as compared to cells expressing the pcDNA 

empty vector control (Figure 3A). To further determine the levels of endogenous miR-
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335-5p and miR-3613-3p in the three a-syn cell models we performed miR extraction 

from the cells followed by qRT-PCR analysis. Interestingly, we found that both miR-335-

5p and miR-3613-3p were significantly elevated in cells overexpressing wild-type a-syn 

and in cells overexpressing the two clinical variants a-syn-A53T and a-syn-E46K as 

compared to cells expressing pcDNA3 alone (Figure 3B).  

Closer analysis of the data also revealed that the expression profiles of miR-335-

5p and miR-3613-3p differed between the different cell lines except for a-syn-A53T 

where the expression of both PARKmiRs was similar (Figure 3B). It is unclear why the 

expression profiles of miR-335-5p and miR-3613-3p differ between the different a-syn 

mutant cell lines but it may be due to differences in severity of cellular toxicity caused by 

the mutations. To further investigate whether overexpression of wild-type or mutated a-

syn has an effect on cell viability we performed neutral red assays on the three cell lines 

and showed that overexpression of wild-type a-syn, a-syn-A53T and a-syn-E46K had no 

significant effect on SH-SY5Y cell viability under normal conditions (Figure 3C).  

As overexpression of wild-type a-syn, a-syn-A53T and a-syn-E46K, coupled with 

exposure to oxidative stress such as H2O2 mimics the neurotoxic environment in PD, we 

wanted to determine whether miR-335-5p and miR-3613-3p can act as neuroprotectors in 

this PD simulated environment.  To accomplish this we transfected miR-335-5p and miR-

3613-3p into SH-SY5Y cell lines overexpressing wild-type a-syn, a-syn-A53T and a-syn-

E46K, respectively. Two days after transfection we treated cells with 100M H2O2 for 

six hours and performed a neutral red assay to quantify cell viability. Our results show 

that miR-335-5p and miR-3613-3p overexpression results in cell viability rescue for all 

mutants compared to control cells (Figure 3D). Indeed, we did not observe this cell 
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viability rescue with only endogenous levels of miR-335-5p and miR-3613-3p implying 

that overexpression of these two PARKmiRs is needed in order to positively effect cell 

viability under neurotoxic stress conditions. These data suggest therefore that miR-335-

5p and miR-3613-3p are acting in a neuroprotective capacity perhaps by regulating genes 

that confer neuroprotection in neurons.  

 

Figure 3.1 PARKmiRs show increased cell viability under neurotoxic conditions. 
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(A) Western blot analysis showing overexpression of monomeric -syn Lane’s 1-4: 

pcDNA3, wt-SNCA (Triplication mutation), E46K, A53T. (B) Overexpression of 

endogenous miR-335-5p and miR-3613-3p in mutant cell lines using qRT-PCR. (C) 

pcDNA3, wt-SNCA, E46K, A53T cells were treated with neutral red and cell viability 

was assayed (n=3, ns- no significance). (D) Indicated cells were treated with 100uM 

H2O2 for 6 hours followed by neutral red assay for cell viability Lane 1-4, Untreated, 

Treated, miR-335-5p treated, miR-3613-3p treated ( n=3, *p< 0.05, **p<0.01, t test). 

 

ATG5, Ataxin-3, and BAG5 are all regaulated by miR-335-5p and miR-3613-3p 

 
To identify potential targets of miR-335-5p and miR-3613-3p we used both in silico 

prediction analysis (miRTarBase, Partek Genomics Suite) and our previously reported 

LC-MS data [121]. From this analysis we identified 1,516 putative protein targets with 

high enrichment scores for miR-335-5p and miR-3613-3p. This putative protein target list 

was then further analyzed for proteins with known associations to neurodegenerative 

pathways, PD, and other fundamental neuronal processes. We found that ATG5, Ataxin-

3, and BAG5 were all predicted targets of miR-3613-3p, however miR-335-5p did not 

target any of these. These targets were of interest because of their direct correlation with 

PD as well as other neurological diseases. We continued to investigate the regulation of 

ATG5, Ataxin-3 (ATXN3), and BAG5 with respect to miR-335-5p because of its 

previously recorded regulatory effects on Leucine Rich Repeat Kinase 2 (LRRK2) which 

BAG5 has been shown to directly interact with [126]. Recently, ATG5 has been shown to 

contribute to the protection of dopaminergic neurons in a MPTP zebrafish PD model 

where ATG5 downregulation leads to decreased autophagy flux further resulting in an 
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influx of aggregated proteins [92]. This was only alleviated when ATG5 was 

overexpressed in cells [111]. ATXN3 has also been shown to be involved in autophagy 

where mutant ATXN3 causes downregulation of BECN1 resulting in decreased 

autophagosome formation [127].  

To further validate our in silico analyses we transfected the miR-335-5p and miR-

3613-3p into SH-SY5Y cells and confirmed overexpression of miRs with qPCR (Figure 

4A), followed by western blot analysis for ATG5, BAG5 and Ataxin-3. We found that 

both miR-335-5p and miR-3613-3p overexpression significantly upregulates the 

expression of Atg5 compared to the control (Figure 4C). Bag5 also showed significant 

upregulation in overexpressed miR-335-5p cells, however we did not observe any 

significant regulation of Bag5 in cells overexpressing miR-3613-3p (Figure 4D-E). 

Interestingly, miR-335-5p had a reverse regulatory effect on Atxn3 by significantly 

downregulating its expression (Figure 4F). We observed a moderate, but significant 

upregulation of Atxn3 in overexpressed miR-3613-3p cells (Fig 4G). It is certainly 

interesting to note that overexpression of miR-335-5p had an effect on all protein targets 

tested suggesting a possible expansive regulatory role miR-335 in these pathways. We 

did not find significant alteration of ATG5, ATXN3, and BAG5 at the mRNA level 

suggesting that a post-transcriptional mechanism was involved in the observed alterations 

of these proteins. 
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Figure 4.1 PARKmiRs 335 and 3613 significantly regulate expression of ATG5, 

BAG5, and ATXN3. 

(A) qRT-PCR analysis showing miR-335-5p and miR-3613-3p in response to mimic 

microRNA transfection. Western blot analysis comparing Control mimic cells (1) with 

miR-335-5p mimic (2) and miR-3613-3p mimic (3). (B, C) Western blot analysis 

showing significant upregulation of ATG5 in both miR-335-5p & miR-3613-3p 

overexpression. (D, E) Western blot analysis showing significant upregulation of BAG5 

in cells overexpressing miR-3613-3p. (F, G) Western blot analysis showing significant 

downregulation of ATXN3 in cells overexpressing miR-335-5p and significant 

upregulation of ATXN3 with cells overexpressing miR-3613-3p. All above (n=4), * p < 

0.05; ** p < 0.01; *** p < 0.001. 
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Discussion  

 
Mutations in ATG5, ATXN3, and BAG5 have been shown to enhance neurodegeneration 

due to misfolded proteins [128], and these mutations have been noted in idiopathic PD 

patients, suggesting that mutations in ATG5, BAG5, and ATXN3 are associated with PD 

[92]. Previous studies have demonstrated that BAG5 functions as a nucleotide exchange 

factor of Hsp70 and also interacts with Parkin to inhibit Parkin E3 ubiquitin ligase 

activity which in turn inhibits Parkin’s ability to ubiquitinate misfolded proteins such as 

alpha synuclein [129]. ATG5 has been shown to play a neuroprotective role in 

dopaminergic neurons by increasing autophagy of misfolded and aggregated proteins. 

This clearance of aggregated proteins mitigated its cytotoxic effects in the neuron [92]. 

ATXN3 repeat expansion mutations have been shown mainly in Spinocerebellar ataxia 

type 3 (SCA3) a neurodegenerative disease in the cerebellum [130]. It has also been 

shown to cause Parkinson’s like phenotypes and previous studies have found that repeat 

expansion mutations occur in early-onset PD [131].  

In our study, we have demonstrated that miR-335-5p and miR-3613-3p are 

unregulated in PD post mortem brain samples corroborating our previous findings [125]. 

In cells over expressing miR-335 and miR-3613 we showed a neuroprotective function 

and a rescue of cell viability when inducing SH-SY5Y cells with hydrogen peroxide 

stress. Interestingly, we also found an increase in endogenous expression of miRs 335 

and 3613 in our mutant cell lines over expressing a-syn variants further corroborating our 

claims that miR expression is increased in neurotoxic conditions. Taking it one step 

further when we overexpressed our miRs in mutant cell lines along with hydrogen 
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peroxide stress we also found an increase in cell viability compared to the control. This 

lead us to believe that miR-335 and miR-3613 are acting in a neuroprotective manner and 

this could be a reason why we see overexpression of both miRs in serum, brain, and 

mutant cell lines.  

In conclusion, we report a novel role for miRs 335 and 3613 as modulators of 

ATG5, ATXN3, and BAG5. We have also shown that overexpression of both miRNAs 

resulted in an increase in cell viability under oxidative stress conditions. The 

understanding of how these miRNAs regulate expression of key targets and the pathways 

involved will lead to improved understanding of the pathogenesis of PD.  

 

Future Work: 

 
Future work would include analyzing the effect mutant versions of Ataxin-3 have on 

Parkin and how it’s down-regulation by miR-335-5p ameliorates the negative effects 

Ataxin-3 has on the cell.  
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Review Project: Cellular Proteostasis in Neurodegeneration. 

 
Introduction 

 
Neurodegenerative disorders are progressive, debilitating diseases characterized by motor 

and cognitive symptoms caused by neuronal death and dysfunction.  Neurodegenerative 

diseases such as Parkinson’s Disease (PD), Alzheimer’s Disease (AD), Huntington’s 

Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and prion diseases (pD) share 

implicated risk factors such as oxidative stress, aging, environmental factors and protein 

dysfunction [132]. These risk factors, however, manifest distinctly in each disease and 

produce unique pathologies. 

Protein misfolding and aggregation is a common theme amongst many 

neurodegenerative diseases, therefore maintaining intracellular protein homeostasis 

(proteostasis) by balancing protein folding and misfolding is paramount in protecting the 

functionality of the proteome [133]. Misfolded proteins are generally inactive, but the 

accumulation of these inactive misfolded proteins causes stress responses in cells and 

organelles. The endoplasmic reticulum (ER) is a key organelle in the maintenance of 

proteostasis; ER stress via protein accumulation triggers the unfolded protein response 

(UPR). The UPR promotes correct protein folding and diminishes ER protein level by 

proteosomal degradation, translation mitigation and autophagy [134]. Autophagy plays an 

essential role in proteostasis because of its ability to degrade protein aggregates that cannot 

be processed by the proteasome [135]. Indeed, the autophagosome can break down and 

recycle whole organelles in an effort to promote cell survival. Protein degradation by 

autophagy and the proteasome utilize ubiquitination to recruit target proteins 
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[4]. Ubiquitination along with other covalent attachments such as phosphorylation, 

SUMOylation, and oxidation regulate normal proteome function. Post-Translational 

Modifications (PTMs) of proteins have been shown to facilitate aggregation in many 

neurodegenerative diseases (NDs) [136].  

A hallmark of NDs is the toxic accumulation and proteotoxicity of disease-

associated proteins. Protein accumulation can lead to aggregates or inclusions, which may 

be toxic or protective [137]. Proteotoxicity is especially problematic with respect to post-

mitotic neurons, drawing a clear line between neurodegeneration and age. Mitochondrial 

proteostasis is also critical for cell survival. Its dysfunction can lead to accumulation of 

reactive oxygen species (ROS), which can be disruptive to cellular proteostasis. ROS can 

debilitate cellular processes by damaging DNA, RNA, lipids, and proteins; stress that 

disturbs mitochondrial proteostasis may lead to the irreversible induction of apoptosis. 

Apoptosis, a highly regulated set of pathways leading to cell death, is initiated in cells 

under stress to avoid the damaging of adjacent cells; this, while advantageous to organisms 

in most cases, is detrimental to the nervous system as differentiated neurons cannot be 

reproduced. Although neuronal loss cannot be fully attributed to apoptosis, it is a common 

culprit in many neurodegenerative disorders such as PD, AD, HD and ALS. 

In this review, we describe important factors that can alter proteostasis and how 

proteostasis dysfunction ultimately affects neurodegeneration.  
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Aim of paper 

 
To highlight the many factors that contribute to neurodegeneration such as post-

translational modifications, protein aggregation, ER-stress, and autophagy. The review 

further aimed at describing how alterations in cellular proteostasis can lead to neuronal cell 

death, and highlight the correlation between many neurodegenerative disorders. 

 
 

Figure 1.2 Altered proteostatic levels and protein conformations lead to hallmark 

pathological neurodegenerative pathways. Damaged and excessive protein directly causes 

ER stress and aggregation as well as mitochondrial dysfunction and oxidative stress 

indirectly. Additionally, feedback loops (I, II) highlight the destructive nature of damaged 
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proteins propagating ER stress and mitochondrial dysfunction leading to loss of 

functionality further altering proteostasis. The cellular defense response to these pathways 

Includes proteosome degradation, autophagy/mitophagy, and apoptosis 

 

 
 

Figure 2.2 Pathway of protein throughout the ER. Protein is synthesized in the rough ER 

by ribosomes. Native protein is predominantly exported, while some can aggregate. 

Misfolded protein aggregates are sent to proteasome for degradation. Misfolded protein 

and aggregates promote the UPR,which includes UPR associated gene regulation, ERAD 

pathway, chaperone response, and apoptosis all in an effort to mitigate the effects of toxic 

aggregates 
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Figure 3.2 Neurodegenerative disorders alter specific steps in the autophagic pathway, 

which ultimately leads to neuronal cell death. The altered steps include reduced induction 

levels due to protein aggregation and defective mTOR inhibition; Defects in cargo 

recognition resulting in accumulation of toxic proteins; Mutation in VCP leads to 

inhibited transport of autophagic vesicle in ALS; Defects in lysosome/autophagasome 

fusion and acidification. All defective steps, leading to impairment of protein degradation 

by lysosomal degradation, ultimately leads to the release of cathepsin’s and apoptosis. 

Huntington’s disease (HD); Alzheimer’s disease 

(AD); Parkinson’s disease (PD); spino-cerebelar ataxia (SCA); spino-muscular atrophy 

(SMA); dementia with Lewy bodies (DLB); Amyotrophic Lateral Sclerosis (ALS); 

Valsin-containing protein (VCP) 
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Collaborative Projects 

Effects of SNCA and disease-causing mutations on the proteome of SH-SY5Y 

cells 

SNCA aggregation and accumulation is a key part of PD pathology. It is however 

unknown at what stage SNCA changes its fate and translocates to Lewy bodies. The 

pathogenic mutations (A30P, E46K and A53T), in addition to duplication and triplication 

events, make it worthwhile exploring what effect the expression of these pathogenic 

forms of SNCA has on the proteome in dopaminergic neuronal SH-SY5Y cells. To this 

end we have transfected pcDNA4 empty vector, and the pcDNA4 vector, containing 

SNCA WT, SNCA A30P, SNCA E46K and SNCA A53T into SH-SY5Y cells. Stable cell 

lines were selected by supplementing full media with zeocin. At this stage we have 

extracted total protein from all the clones for 2D-gPAGE analysis and Western blot gels 

have already been run and analyzed. The manuscript is ready for submission to Journal 

of Neuroscience Research.  

 

Contributions: 

I worked with Rashed Abdullah on this project. I performed mammalian cell culture 

maintenance, I performed western blot analysis for multiple replicates as well as control 

samples. I also helped with image analysis of figures. 
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Figure contribution: Performed replicates of western blots from Whole cell lysates.  

 

 

 
Figure 1.3 Whole cells lysate results of transfections of pathological variants of SNCA as 

well as wt-SNCA to mimic duplication/triplication event. Cells were transfected with 

pcDNA3 as a transfection control; wt-SNCA to mimic a duplication/triplication event; 

A30P-SNCA, E46K-SNCA, and A53T-SNCA to mimic the presence of the pathological form 

of a-syn in cells. Cells were measured for cell survival with and without treatments. 
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Western blot images are representative blots. a) Whole cells lysate of transfections of 

pathological mutations under no treatments, H2O2, and L-Dopa treatments (n=3). b) An 

assay of cell viability as measured by the neutral red assay. Cells were checked to determine 

if the viability was affected by transfections of pathological mutants and by H2O2 and L-

Dopa treatments (n=3). We found no significant decrease in the viability of cell treated 

with H2O2, and L-Dopa. 

 
 

Alpha-Synuclein Multimerization is Dependent on Structural Characteristics 

of Repeated KTKEGV Regions 

 
 
A physio-pathological hallmark of PD is the presence of Lewy Bodies: aggregates which 

are highly enriched in -syn. -syn is an intrinsically disordered protein that forms 

soluble multimers, which may or may not contribute to its aggregation. Isolating critical 

components of alpha-synuclein’s structure could lead to a therapeutic strategy of 

preventing its aggregation. The repeated KTKEGV motif has been implicated as critical 

to neurotoxicity and the presence of multimers or exclusive presence of monomers in 

neuroblastoma cells. Targeting the repeated motif. KTKEGV, is a sensible approach to 

studying the critical components of -syn proteostasis simply due to its prevalence 

throughout the protein. We transfected BE(2)-M17 human neuroblastoma cells in order to 

overexpress at similar levels alpha-synuclein containing mutations in the KTKEGV 

motif. Western blotting was used to measure -syn multimeric distributions in whole cell 

extracts. The data shows that physiological distribution of -syn multimers throughout 
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neurons is cell-type specific and influenced by the sequence of repeated N-terminus 

KTKEGV motifs. The manuscript is ready for submission to Journal of Biological 

Chemistry. 

 

Contributions: 

I worked closely with Benjamin Rosen. I assisted with subcellular fractionations of 

BE(2)-M17 cells, cell culture maintenance, and western blot analysis. I worked on 

multiple replicates and loading controls.  

 

 
Concluding Remarks 
 
 
This study aims to both clarify the importance of the repeats sequence to alpha-synuclein 

multimerization and aggregation in neurons as well as within subcellular compartments 

of neurons.  
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Figure 1.4 Subcellular fraction comparison of alpha-synuclein in M17D cells stably 

overexpressing repeat mutant SNCA. (A, D) Cytosolic (B, E Membrane bound (C, F, I) 

Nuclear soluble (G, H) Chromatin bound 
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Review Project: The Intersection of Parkinson’s disease, viral 

infections and COVID-19 

 

The novel SARS-CoV-2 coronavirus (COVID-19) pandemic has caused a global health 

crisis infecting millions worldwide. Along with flu-like symptoms (fever, chills, cough) a 

large number of infected individuals also experience a host of neurological issues 

including loss of smell and taste, dizziness, decreased alertness, and brain inflammation. 

A striking number of symptoms including gut issues are also prevalent in PD. A higher 

mortality rate has also been reported in patients with PD not only due to low age, but also 

through interactions with the brain dopaminergic system and the inflammatory response. 

The gut microbiota plays an important role in many processes outside of a healthy 

digestive system. It has been shown to be essential in protecting against host pathogens 

[138] and even plays a role in our psychological well-being [139]. Viral infections are 

among some of the most common pathogens invading our gut microbiome causing 

dysbiosis and a multitude of Gastrointestinal issues (GI)[140]. Patients with PD display 

an array of GI complications such as constipation, dysphasia, and dysbiosis (Table) [141] 

and these complications often occur years before hallmark motor symptoms arise [142]. 

The gut microbiota is also decreased in older adults due to a number of factors that 

include diet, genetics, and environmental factors [143]. It has also been noted that severe 

viral infections could possibly increase the risk of developing PD later in life [144] 

although not the primary cause but merely a risk factor. Evidence has suggested that 

SARS-CoV-2 RNA can be detected in the stool of some patients with COVID-19 [145]. 

This data suggests that there may be a link between the gut microbiota and COVID-19 
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severity, particularly as the higher COVID-19 mortality rate is seen within the elderly 

population that already have a decreased microbiota. This may also suggest an increased 

chance of COVID-19 mortality for a patient with PD due to an increase of underlying 

conditions which include a compromised Gut flora [146]. Revised manuscript 

resubmitted to Molecular Neurobiology. 

 

Concluding remarks 

In this review we have highlighted the intersections between PD, viral infections and 

COVID-19 with the emphasis on the many similarities between RNA viral pathways and 

neurodegeneration in PD. Indeed, the onset and progression of PD, as detailed in the 

Braak hypothesis, as well as the pathogenic nature, molecular mechanisms, and symptom 

development of the disorder share many similarities with the SARS-CoV-2 virus and 

COVID-19. As further research is conducted, more evidence of a possible correlation 

between PD, Viral infections and the current SARS-CoV-2 virus will become available. 

 

Table 1.6 Commonalities between Parkinson’s Disease and RNA virus infection 
 

 Alpha-
synuclein 

 
Oxidative Stress 

 
Inflammation 

 
Metals 

Gut 
Microbiome 

Olfactory 
Tract 

Parkinson’s 
Disease  

Aggregation 
leads to 
neurotoxic 
Lewy Bodies 
[4] 

Dysfunctional 
regulation of ROS 
by several genes 
including SOD1 
leads to oxidative 
stress and 
apoptosis [147] 

Protective short 
term, 
exacerbates 
non-motor 
symptoms long 
term [148, 149] 

Exposure to 
heavy 
metals such 
as Mn is a 
risk factor 
for PD [150] 

GI problems 
such as 
dysbiosis, 
constipation, 
and dysphasia 
[151] 

Olfactory 
dysfunction 
is one of 
the earliest 
signs of PD 
[152, 153] 

RNA Virus 
Infection 

Upregulated 
in infected 
cells and 
restricts RNA 
virus 
replication 
[154, 155] 

Can create ROS 
imbalance causing 
DNA damage and 
neuroinflammation 
[156] 

Neuro-
inflammatory 
response can be 
triggered by 
infection [154, 
157] 

RNA virus 
replication 
depends on 
and may 
cause 
increase in 
Mn and Fe 
[158, 159] 

Microbiota 
depletion leads 
to GI issues 
causing 
inflammation 
and lack of gut 
flora [160]  

Olfactory 
dysfunction 
is one of 
the earliest 
signs of 
COVID-19 
infection 
[161, 162] 
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Fig. 1.5 The Brain-Gut microbiota axis: Schematic diagram highlighting the relationship 

between the brain and gut microbiota. A rich and diverse microflora allows for healthy 

immune and regulatory mediators, whereby a compromised gut microflora caused by 

viral infections, stress, and poor diet can cause a pro-inflammatory state with implications 

for neuroinflammation.  
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Appendix A: List of Vectors 

 
 
Vector Maps were obtained from manufacturer’s website. 
 
A-1. pJET 1.2/blunt 
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A-2 pcDNA3 
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Appendix B: Molecular size markers 

 
B-1. PageRuler Unstained Broad Range Protein Ladder 

 
 
 
B-2. Hi-Lo DNA Marker  
 
Hi-Lo DNA Marker has approximately 935ng/10ul with DNA concentration per band 
 

 
 
  



 
 

73 

        

 

REFERENCES 

 
1. Bossy-Wetzel, E., R. Schwarzenbacher, and S.A. Lipton, Molecular pathways to 

neurodegeneration. Nat Med, 2004. 10 Suppl: p. S2-9. 
2. Hirsch, E., A.M. Graybiel, and Y.A. Agid, Melanized dopaminergic neurons are 

differentially susceptible to degeneration in Parkinson's disease. Nature, 1988. 
334(6180): p. 345-8. 

3. Braak, H., et al., Idiopathic Parkinson's disease: possible routes by which 
vulnerable neuronal types may be subject to neuroinvasion by an unknown 
pathogen. J Neural Transm (Vienna), 2003. 110(5): p. 517-36. 

4. Tanaka, K. and N. Matsuda, Proteostasis and neurodegeneration: the roles of 
proteasomal degradation and autophagy. Biochim Biophys Acta, 2014. 1843(1): 
p. 197-204. 

5. Lang, A.E. and A.M. Lozano, Parkinson's disease. First of two parts. N Engl J Med, 
1998. 339(15): p. 1044-53. 

6. Tuite, P.J. and K. Krawczewski, Parkinsonism: a review-of-systems approach to 
diagnosis. Semin Neurol, 2007. 27(2): p. 113-22. 

7. Deuschl, G., P. Bain, and M. Brin, Consensus statement of the Movement 
Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord, 1998. 13 
Suppl 3: p. 2-23. 

8. Jankovic, J., Parkinson's disease: clinical features and diagnosis. J Neurol 
Neurosurg Psychiatry, 2008. 79(4): p. 368-76. 

9. Jain, S., S.E. Lo, and E.D. Louis, Common misdiagnosis of a common neurological 
disorder: how are we misdiagnosing essential tremor? Arch Neurol, 2006. 63(8): 
p. 1100-4. 

10. Samii, A., J.G. Nutt, and B.R. Ransom, Parkinson's disease. Lancet, 2004. 
363(9423): p. 1783-93. 

11. Agostino, R., et al., Analysis of repetitive and nonrepetitive sequential arm 
movements in patients with Parkinson's disease. Mov Disord, 1994. 9(3): p. 311-
4. 

12. O'Sullivan SB, S.T., Fulk G., Physical rehabilitation. 2019. 
13. Berardelli, A., A.F. Sabra, and M. Hallett, Physiological mechanisms of rigidity in 

Parkinson's disease. J Neurol Neurosurg Psychiatry, 1983. 46(1): p. 45-53. 
14. Skeie, G.O., et al., Differential effect of environmental risk factors on postural 

instability gait difficulties and tremor dominant Parkinson's disease. Mov Disord, 
2010. 25(12): p. 1847-52. 

15. Bohnen, N.I., et al., Leucoaraiosis, nigrostriatal denervation and motor symptoms 
in Parkinson's disease. Brain, 2011. 134(Pt 8): p. 2358-65. 



 
 

74 

16. Koller, W.C., et al., Falls and Parkinson's disease. Clin Neuropharmacol, 1989. 
12(2): p. 98-105. 

17. Ozinga, S.J., et al., Objective assessment of postural stability in Parkinson's 
disease using mobile technology. Mov Disord, 2015. 30(9): p. 1214-21. 

18. Poewe, W., Dysautonomia and cognitive dysfunction in Parkinson's disease. Mov 
Disord, 2007. 22 Suppl 17: p. S374-8. 

19. Hawkes, C.H., K. Del Tredici, and H. Braak, Parkinson's disease: a dual-hit 
hypothesis. Neuropathology and Applied Neurobiology, 2007. 33(6): p. 599-614. 

20. de Lau, L.M. and M.M. Breteler, Epidemiology of Parkinson's disease. Lancet 
Neurol, 2006. 5(6): p. 525-35. 

21. Abdullah, R., et al., Parkinson's disease and age: The obvious but largely 
unexplored link. Exp Gerontol, 2015. 68: p. 33-8. 

22. Hindle, J.V., Ageing, neurodegeneration and Parkinson's disease. Age Ageing, 
2010. 39(2): p. 156-61. 

23. Saez, I. and D. Vilchez, The Mechanistic Links Between Proteasome Activity, Aging 
and Age-related Diseases. Curr Genomics, 2014. 15(1): p. 38-51. 

24. Reeve, A., E. Simcox, and D. Turnbull, Ageing and Parkinson's disease: why is 
advancing age the biggest risk factor? Ageing Res Rev, 2014. 14: p. 19-30. 

25. Martin, I., V.L. Dawson, and T.M. Dawson, Recent advances in the genetics of 
Parkinson's disease. Annu Rev Genomics Hum Genet, 2011. 12: p. 301-25. 

26. Polymeropoulos, M.H., et al., Mutation in the alpha-synuclein gene identified in 
families with Parkinson's disease. Science, 1997. 276(5321): p. 2045-7. 

27. Zimprich, A., et al., Mutations in LRRK2 cause autosomal-dominant parkinsonism 
with pleomorphic pathology. Neuron, 2004. 44(4): p. 601-7. 

28. Kitada, T., et al., Mutations in the parkin gene cause autosomal recessive juvenile 
parkinsonism. Nature, 1998. 392(6676): p. 605-8. 

29. Valente, E.M., et al., Hereditary early-onset Parkinson's disease caused by 
mutations in PINK1. Science, 2004. 304(5674): p. 1158-60. 

30. Shimura, H., et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-
protein ligase. Nat Genet, 2000. 25(3): p. 302-5. 

31. Pezzoli, G. and E. Cereda, Exposure to pesticides or solvents and risk of Parkinson 
disease. Neurology, 2013. 80(22): p. 2035-41. 

32. Cole, N.B., et al., Metal-catalyzed oxidation of alpha-synuclein: helping to define 
the relationship between oligomers, protofibrils, and filaments. J Biol Chem, 
2005. 280(10): p. 9678-90. 

33. Tanner, C.M., et al., Occupation and risk of parkinsonism: a multicenter case-
control study. Arch Neurol, 2009. 66(9): p. 1106-13. 

34. Dexter, D.T., et al., Increased nigral iron content and alterations in other metal 
ions occurring in brain in Parkinson's disease. J Neurochem, 1989. 52(6): p. 1830-
6. 

35. Abdullah, R., et al., Subcellular Parkinson's Disease-Specific Alpha-Synuclein 
Species Show Altered Behavior in Neurodegeneration. Mol Neurobiol, 2017. 
54(10): p. 7639-7655. 



 
 

75 

36. Winner, B., et al., In vivo demonstration that alpha-synuclein oligomers are toxic. 
Proc Natl Acad Sci U S A, 2011. 108(10): p. 4194-9. 

37. Prots, I., et al., alpha-Synuclein oligomers impair neuronal microtubule-kinesin 
interplay. J Biol Chem, 2013. 288(30): p. 21742-54. 

38. Jellinger, K.A., Basic mechanisms of neurodegeneration: a critical update. J Cell 
Mol Med, 2010. 14(3): p. 457-87. 

39. Abdullah, R., et al., Parkinson's disease and age: The obvious but largely 
unexplored link. Experimental Gerontology, 2015. 68: p. 33-38. 

40. Neumann, C.A., et al., Essential role for the peroxiredoxin Prdx1 in erythrocyte 
antioxidant defence and tumour suppression. Nature, 2003. 424(6948): p. 561-5. 

41. Obeso, J.A., et al., Missing pieces in the Parkinson's disease puzzle. Nat Med, 
2010. 16(6): p. 653-61. 

42. Kawamoto, Y., et al., Accumulation of HtrA2/Omi in neuronal and glial inclusions 
in brains with alpha-synucleinopathies. J Neuropathol Exp Neurol, 2008. 67(10): 
p. 984-93. 

43. Alvarez-Erviti, L., et al., Influence of microRNA deregulation on chaperone-
mediated autophagy and alpha-synuclein pathology in Parkinson's disease. Cell 
Death Dis, 2013. 4: p. e545. 

44. Kiffin, R., et al., Altered dynamics of the lysosomal receptor for chaperone-
mediated autophagy with age. J Cell Sci, 2007. 120(Pt 5): p. 782-91. 

45. Scherz-Shouval, R. and Z. Elazar, ROS, mitochondria and the regulation of 
autophagy. Trends Cell Biol, 2007. 17(9): p. 422-7. 

46. Yamaguchi, R. and G. Perkins, Dynamics of mitochondrial structure during 
apoptosis and the enigma of Opa1. Biochim Biophys Acta, 2009. 1787(8): p. 963-
72. 

47. Menzies, F.M., K. Moreau, and D.C. Rubinsztein, Protein misfolding disorders and 
macroautophagy. Curr Opin Cell Biol, 2011. 23(2): p. 190-7. 

48. Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. 
Nature, 2008. 451(7182): p. 1069-75. 

49. Wong, E. and A.M. Cuervo, Autophagy gone awry in neurodegenerative diseases. 
Nat Neurosci, 2010. 13(7): p. 805-11. 

50. Sarkar, S., Regulation of autophagy by mTOR-dependent and mTOR-independent 
pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic 
application of autophagy enhancers. Biochem Soc Trans, 2013. 41(5): p. 1103-30. 

51. Vidal, R.L., et al., Targeting autophagy in neurodegenerative diseases. Trends 
Pharmacol Sci, 2014. 35(11): p. 583-91. 

52. Cuervo, A.M., et al., Impaired degradation of mutant alpha-synuclein by 
chaperone-mediated autophagy. Science, 2004. 305(5688): p. 1292-5. 

53. Komatsu, M., et al., Loss of autophagy in the central nervous system causes 
neurodegeneration in mice. Nature, 2006. 441(7095): p. 880-4. 

54. Poole, A.C., et al., The PINK1/Parkin pathway regulates mitochondrial 
morphology. Proc Natl Acad Sci U S A, 2008. 105(5): p. 1638-43. 



 
 

76 

55. Krebiehl, G., et al., Reduced basal autophagy and impaired mitochondrial 
dynamics due to loss of Parkinson's disease-associated protein DJ-1. PLoS One, 
2010. 5(2): p. e9367. 

56. Liang, C.L., et al., Mitochondria mass is low in mouse substantia nigra dopamine 
neurons: implications for Parkinson's disease. Exp Neurol, 2007. 203(2): p. 370-
80. 

57. Rao, S.S., L.A. Hofmann, and A. Shakil, Parkinson's disease: diagnosis and 
treatment. Am Fam Physician, 2006. 74(12): p. 2046-54. 

58. Foster, H.D. and A. Hoffer, The two faces of L-DOPA: benefits and adverse side 
effects in the treatment of Encephalitis lethargica, Parkinson's disease, multiple 
sclerosis and amyotrophic lateral sclerosis. Med Hypotheses, 2004. 62(2): p. 177-
81. 

59. Ardekani, A.M. and M.M. Naeini, The Role of MicroRNAs in Human Diseases. 
Avicenna J Med Biotechnol, 2010. 2(4): p. 161-79. 

60. Ha, M. and V.N. Kim, Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 
2014. 15(8): p. 509-24. 

61. Carthew, R.W. and E.J. Sontheimer, Origins and Mechanisms of miRNAs and 
siRNAs. Cell, 2009. 136(4): p. 642-55. 

62. Kim, V.N., J. Han, and M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev 
Mol Cell Biol, 2009. 10(2): p. 126-39. 

63. Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor 
complex. Nature, 2004. 432(7014): p. 231-5. 

64. Zhang, H., et al., Single processing center models for human Dicer and bacterial 
RNase III. Cell, 2004. 118(1): p. 57-68. 

65. Yoda, M., et al., ATP-dependent human RISC assembly pathways. Nat Struct Mol 
Biol, 2010. 17(1): p. 17-23. 

66. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 
2004. 116(2): p. 281-97. 

67. Siciliano, V., et al., MiRNAs confer phenotypic robustness to gene networks by 
suppressing biological noise. Nat Commun, 2013. 4: p. 2364. 

68. Chen, X., et al., Characterization of microRNAs in serum: a novel class of 
biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008. 18(10): p. 
997-1006. 

69. Cogswell, J.P., et al., Identification of miRNA changes in Alzheimer's disease brain 
and CSF yields putative biomarkers and insights into disease pathways. J 
Alzheimers Dis, 2008. 14(1): p. 27-41. 

70. Gallo, A., et al., The majority of microRNAs detectable in serum and saliva is 
concentrated in exosomes. PLoS One, 2012. 7(3): p. e30679. 

71. Zhou, Q., et al., Immune-related microRNAs are abundant in breast milk 
exosomes. Int J Biol Sci, 2012. 8(1): p. 118-23. 

72. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for 
cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513-8. 

73. Iftikhar, H. and G.E. Carney, Evidence and potential in vivo functions for biofluid 
miRNAs: From expression profiling to functional testing: Potential roles of 



 
 

77 

extracellular miRNAs as indicators of physiological change and as agents of 
intercellular information exchange. Bioessays, 2016. 38(4): p. 367-78. 

74. Spillantini, M.G., et al., Alpha-synuclein in Lewy bodies. Nature, 1997. 388(6645): 
p. 839-40. 

75. Kruger, R., et al., Ala30Pro mutation in the gene encoding alpha-synuclein in 
Parkinson's disease. Nat Genet, 1998. 18(2): p. 106-8. 

76. Zarranz, J.J., et al., The new mutation, E46K, of alpha-synuclein causes Parkinson 
and Lewy body dementia. Ann Neurol, 2004. 55(2): p. 164-73. 

77. Singleton, A.B., et al., alpha-Synuclein locus triplication causes Parkinson's 
disease. Science, 2003. 302(5646): p. 841. 

78. Conway, K.A., et al., Acceleration of oligomerization, not fibrillization, is a shared 
property of both alpha-synuclein mutations linked to early-onset Parkinson's 
disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A, 
2000. 97(2): p. 571-6. 

79. Emmanouilidou, E., et al., Cell-produced alpha-synuclein is secreted in a calcium-
dependent manner by exosomes and impacts neuronal survival. J Neurosci, 2010. 
30(20): p. 6838-51. 

80. Narendra, D.P., et al., PINK1 is selectively stabilized on impaired mitochondria to 
activate Parkin. PLoS Biol, 2010. 8(1): p. e1000298. 

81. Narendra, D., et al., Parkin is recruited selectively to impaired mitochondria and 
promotes their autophagy. J Cell Biol, 2008. 183(5): p. 795-803. 

82. Jiang, H., et al., Parkin protects human dopaminergic neuroblastoma cells against 
dopamine-induced apoptosis. Hum Mol Genet, 2004. 13(16): p. 1745-54. 

83. Perez, F.A. and R.D. Palmiter, Parkin-deficient mice are not a robust model of 
parkinsonism. Proc Natl Acad Sci U S A, 2005. 102(6): p. 2174-9. 

84. Muftuoglu, M., et al., Mitochondrial complex I and IV activities in leukocytes from 
patients with parkin mutations. Mov Disord, 2004. 19(5): p. 544-8. 

85. Palacino, J.J., et al., Mitochondrial dysfunction and oxidative damage in parkin-
deficient mice. J Biol Chem, 2004. 279(18): p. 18614-22. 

86. Arkinson, C. and H. Walden, Parkin function in Parkinson's disease. Science, 2018. 
360(6386): p. 267-268. 

87. Deter, R.L. and C. De Duve, Influence of glucagon, an inducer of cellular 
autophagy, on some physical properties of rat liver lysosomes. J Cell Biol, 1967. 
33(2): p. 437-49. 

88. Yao, Z., et al., Atg41/Icy2 regulates autophagosome formation. Autophagy, 2015. 
11(12): p. 2288-99. 

89. Gordy, C. and Y.W. He, The crosstalk between autophagy and apoptosis: where 
does this lead? Protein Cell, 2012. 3(1): p. 17-27. 

90. Pierdominici, M., et al., Role of autophagy in immunity and autoimmunity, with a 
special focus on systemic lupus erythematosus. FASEB J, 2012. 26(4): p. 1400-12. 

91. Hara, T., et al., Suppression of basal autophagy in neural cells causes 
neurodegenerative disease in mice. Nature, 2006. 441(7095): p. 885-9. 



 
 

78 

92. Hu, Z.Y., et al., Up-regulation of autophagy-related gene 5 (ATG5) protects 
dopaminergic neurons in a zebrafish model of Parkinson's disease. J Biol Chem, 
2017. 292(44): p. 18062-18074. 

93. Yokoyama, H., et al., Neuropharmacological approach against MPTP (1-methyl-4-
phenyl-1,2,3,6- tetrahydropyridine)-induced mouse model of Parkinson's disease. 
Acta Neurobiol Exp (Wars), 2011. 71(2): p. 269-80. 

94. Chen, D., et al., A novel and functional variant within the ATG5 gene promoter in 
sporadic Parkinson's disease. Neurosci Lett, 2013. 538: p. 49-53. 

95. Kerscher, O., R. Felberbaum, and M. Hochstrasser, Modification of proteins by 
ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol, 2006. 22: p. 159-80. 

96. Nijman, S.M., et al., A genomic and functional inventory of deubiquitinating 
enzymes. Cell, 2005. 123(5): p. 773-86. 

97. Durcan, T.M., et al., The Machado-Joseph disease-associated mutant form of 
ataxin-3 regulates parkin ubiquitination and stability. Hum Mol Genet, 2011. 
20(1): p. 141-54. 

98. Kawaguchi, Y., et al., CAG expansions in a novel gene for Machado-Joseph 
disease at chromosome 14q32.1. Nat Genet, 1994. 8(3): p. 221-8. 

99. Zoghbi, H.Y. and H.T. Orr, Glutamine repeats and neurodegeneration. Annu Rev 
Neurosci, 2000. 23: p. 217-47. 

100. Orr, H.T. and H.Y. Zoghbi, Reversing neurodegeneration: a promise unfolds. Cell, 
2000. 101(1): p. 1-4. 

101. Klein, C., S.A. Schneider, and A.E. Lang, Hereditary parkinsonism: Parkinson 
disease look-alikes--an algorithm for clinicians to "PARK" genes and beyond. Mov 
Disord, 2009. 24(14): p. 2042-58. 

102. Durcan, T.M. and E.A. Fon, Mutant ataxin-3 promotes the autophagic 
degradation of parkin. Autophagy, 2011. 7(2): p. 233-4. 

103. Sousa, R., Structural mechanisms of chaperone mediated protein disaggregation. 
Front Mol Biosci, 2014. 1: p. 12. 

104. Qu, D., et al., BAG2 Gene-mediated Regulation of PINK1 Protein Is Critical for 
Mitochondrial Translocation of PARKIN and Neuronal Survival. J Biol Chem, 2015. 
290(51): p. 30441-52. 

105. De Snoo, M.L., et al., Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-
dependent mitophagy and cell death. Cell Death Dis, 2019. 10(12): p. 907. 

106. Guo, K., et al., Bag5 protects neuronal cells from amyloid beta-induced cell death. 
J Mol Neurosci, 2015. 55(4): p. 815-20. 

107. Wang, X., et al., BAG5 protects against mitochondrial oxidative damage through 
regulating PINK1 degradation. PLoS One, 2014. 9(1): p. e86276. 

108. Ma, M., et al., Protective effect of BAG5 on MPP+-induced apoptosis in PC12 
cells. Neurol Res, 2012. 34(10): p. 977-83. 

109. Qin, L.X., et al., BAG5 Interacts with DJ-1 and Inhibits the Neuroprotective Effects 
of DJ-1 to Combat Mitochondrial Oxidative Damage. Oxid Med Cell Longev, 2017. 
2017: p. 5094934. 

110. de Rijk, M.C., et al., Prevalence of Parkinson's disease in the elderly: the 
Rotterdam Study. Neurology, 1995. 45(12): p. 2143-6. 



 
 

79 

111. Pickrell, A.M. and R.J. Youle, The roles of PINK1, parkin, and mitochondrial fidelity 
in Parkinson's disease. Neuron, 2015. 85(2): p. 257-73. 

112. Farrer, M.J., Genetics of Parkinson disease: paradigm shifts and future prospects. 
Nat Rev Genet, 2006. 7(4): p. 306-18. 

113. Caggiu, E., et al., Differential expression of miRNA 155 and miRNA 146a in 
Parkinson's disease patients. eNeurologicalSci, 2018. 13: p. 1-4. 

114. Kurtishi, A., et al., Cellular Proteostasis in Neurodegeneration. Mol Neurobiol, 
2018. 

115. Dawson, T.M. and V.L. Dawson, Parkin plays a role in sporadic Parkinson's 
disease. Neurodegener Dis, 2014. 13(2-3): p. 69-71. 

116. Klein, C. and K. Lohmann-Hedrich, Impact of recent genetic findings in 
Parkinson's disease. Curr Opin Neurol, 2007. 20(4): p. 453-64. 

117. Schlossmacher, M.G., et al., Parkin localizes to the Lewy bodies of Parkinson 
disease and dementia with Lewy bodies. Am J Pathol, 2002. 160(5): p. 1655-67. 

118. Song, J., M. Takeda, and R.I. Morimoto, Bag1-Hsp70 mediates a physiological 
stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol, 
2001. 3(3): p. 276-82. 

119. Kalia, S.K., et al., BAG5 inhibits parkin and enhances dopaminergic neuron 
degeneration. Neuron, 2004. 44(6): p. 931-45. 

120. McNeill, E. and D. Van Vactor, MicroRNAs shape the neuronal landscape. 
Neuron, 2012. 75(3): p. 363-79. 

121. Patil, K.S., et al., Combinatory microRNA serum signatures as classifiers of 
Parkinson's disease. Parkinsonism Relat Disord, 2019. 64: p. 202-210. 

122. Hoss, A.G., et al., microRNA Profiles in Parkinson's Disease Prefrontal Cortex. 
Front Aging Neurosci, 2016. 8: p. 36. 

123. Miñones-Moyano, E., et al., MicroRNA profiling of Parkinson's disease brains 
identifies early downregulation of miR-34b/c which modulate mitochondrial 
function. Hum Mol Genet, 2011. 20(15): p. 3067-78. 

124. Mouradian, M.M., MicroRNAs in Parkinson's disease. Neurobiol Dis, 2012. 46(2): 
p. 279-84. 

125. Patil, K.S., et al., Combinatory microRNA serum signatures as classifiers of 
Parkinson's disease. Parkinsonism Relat Disord, 2019. 64: p. 202-210. 

126. Beilina, A., et al., Unbiased screen for interactors of leucine-rich repeat kinase 2 
supports a common pathway for sporadic and familial Parkinson disease. Proc 
Natl Acad Sci U S A, 2014. 111(7): p. 2626-31. 

127. Ashkenazi, A., et al., Polyglutamine tracts regulate autophagy. Autophagy, 2017. 
13(9): p. 1613-1614. 

128. Kalia, S.K., et al., BAG5 inhibits parkin and enhances dopaminergic neuron 
degeneration. Neuron, 2004. 44(6): p. 931-945. 

129. Chung, K.K. and T.M. Dawson, Parkin and Hsp70 sacked by BAG5. Neuron, 2004. 
44(6): p. 899-901. 

130. Hsu, J.Y., et al., The Truncated C-terminal Fragment of Mutant ATXN3 Disrupts 
Mitochondria Dynamics in Spinocerebellar Ataxia Type 3 Models. Front Mol 
Neurosci, 2017. 10: p. 196. 



 
 

80 

131. Bettencourt, C., et al., Parkinsonian phenotype in Machado-Joseph disease 
(MJD/SCA3): a two-case report. BMC Neurology, 2011. 11(1): p. 131. 

132. Coppede, F. and L. Migliore, DNA damage in neurodegenerative diseases. Mutat 
Res, 2015. 776: p. 84-97. 

133. Hipp, M.S., S.H. Park, and F.U. Hartl, Proteostasis impairment in protein-
misfolding and -aggregation diseases. Trends Cell Biol, 2014. 24(9): p. 506-14. 

134. Hetz, C., The unfolded protein response: controlling cell fate decisions under ER 
stress and beyond. Nature Reviews Molecular Cell Biology, 2012. 13: p. 89. 

135. Komatsu, M., et al., Constitutive autophagy: vital role in clearance of unfavorable 
proteins in neurons. Cell Death And Differentiation, 2007. 14: p. 887. 

136. Drazic, A., et al., The world of protein acetylation. Biochim Biophys Acta, 2016. 
1864(10): p. 1372-401. 

137. Saudou, F., et al., Huntingtin Acts in the Nucleus to Induce Apoptosis but Death 
Does Not Correlate with the Formation of Intranuclear Inclusions. Cell. 95(1): p. 
55-66. 

138. Wakabayashi, K., et al., Parkinson's disease: the presence of Lewy bodies in 
Auerbach's and Meissner's plexuses. Acta Neuropathol, 1988. 76(3): p. 217-221. 

139. Lee, S.H., et al., Emotional well-being and gut microbiome profiles by enterotype. 
Sci Rep, 2020. 10(1): p. 20736. 

140. Karst, S.M., The influence of commensal bacteria on infection with enteric 
viruses. Nat Rev Microbiol, 2016. 14(4): p. 197-204. 

141. Cersosimo, M.G. and E.E. Benarroch, Pathological correlates of gastrointestinal 
dysfunction in Parkinson's disease. Neurobiol Dis, 2012. 46(3): p. 559-64. 

142. Dutta, S.K., et al., Parkinson's Disease: The Emerging Role of Gut Dysbiosis, 
Antibiotics, Probiotics, and Fecal Microbiota Transplantation. J 
Neurogastroenterol Motil, 2019. 25(3): p. 363-376. 

143. Dhar, D. and A. Mohanty, Gut microbiota and Covid-19- possible link and 
implications. Virus Res, 2020. 285: p. 198018. 

144. Sulzer, D., et al., COVID-19 and possible links with Parkinson's disease and 
parkinsonism: from bench to bedside. NPJ Parkinsons Dis, 2020. 6: p. 18. 

145. Wu, Y., et al., Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. 
Lancet Gastroenterol Hepatol, 2020. 5(5): p. 434-435. 

146. Sampson, T.R., et al., Gut Microbiota Regulate Motor Deficits and 
Neuroinflammation in a Model of Parkinson's Disease. Cell, 2016. 167(6): p. 
1469-1480 e12. 

147. Stolzenberg, E., et al., A Role for Neuronal Alpha-Synuclein in Gastrointestinal 
Immunity. J Innate Immun, 2017. 9(5): p. 456-463. 

148. Tansey, M.G., M.K. McCoy, and T.C. Frank-Cannon, Neuroinflammatory 
mechanisms in Parkinson's disease: potential environmental triggers, pathways, 
and targets for early therapeutic intervention. Exp Neurol, 2007. 208(1): p. 1-25. 

149. Wyss-Coray, T. and L. Mucke, Inflammation in Neurodegenerative Disease—A 
Double-Edged Sword. Neuron, 2002. 35(3): p. 419-432. 

150. Aslam, N., et al., Effects of chelating agents on heavy metals in Hepatitis C Virus 
(HCV) patients. Math Biosci Eng, 2019. 16(3): p. 1138-1149. 



 
 

81 

151. Saito, Y., et al., Lewy body pathology involves the olfactory cells in Parkinson's 
disease and related disorders. Mov Disord, 2016. 31(1): p. 135-8. 

152. Braak, H., et al., Staging of brain pathology related to sporadic Parkinson's 
disease. Neurobiol Aging, 2003. 24(2): p. 197-211. 

153. Braak, H., et al., Stages in the development of Parkinson's disease-related 
pathology. Cell Tissue Res, 2004. 318(1): p. 121-34. 

154. Bantle, C.M., et al., Infection with mosquito-borne alphavirus induces selective 
loss of dopaminergic neurons, neuroinflammation and widespread protein 
aggregation. NPJ Parkinsons Dis, 2019. 5: p. 20. 

155. Beatman, E.L., et al., Alpha-Synuclein Expression Restricts RNA Viral Infections in 
the Brain. J Virol, 2015. 90(6): p. 2767-82. 

156. Paracha, U.Z., et al., Oxidative stress and hepatitis C virus. Virol J, 2013. 10: p. 
251. 

157. Klein, R.S., et al., Neuroinflammation During RNA Viral Infections. Annu Rev 
Immunol, 2019. 37: p. 73-95. 

158. Ahn, D.G., et al., Biochemical characterization of a recombinant SARS coronavirus 
nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. 
Arch Virol, 2012. 157(11): p. 2095-104. 

159. Montgomery, E.B., Jr., Heavy metals and the etiology of Parkinson's disease and 
other movement disorders. Toxicology, 1995. 97(1-3): p. 3-9. 

160. Rothschild, D., et al., Environment dominates over host genetics in shaping 
human gut microbiota. Nature, 2018. 555(7695): p. 210-215. 

161. Brann, D.H., et al., Non-neuronal expression of SARS-CoV-2 entry genes in the 
olfactory system suggests mechanisms underlying COVID-19-associated anosmia. 
Science Advances, 2020. 6(31): p. eabc5801. 

162. Passarelli, P.C., et al., Taste and smell as chemosensory dysfunctions in COVID-19 
infection. Am J Dent, 2020. 33(3): p. 135-137. 



 
 

Vita 

 

Name Alberim Kurtishi 

Baccalaureate Degree 

   

 
Bachelor of Science, St. John’s 
University, New York 
Major: Biology 

Date Graduated 05, 2010 

Other Degrees and Certificates Master of Science, St. John’s 
University, New York, Major: 
Biology 

 

Date Graduated 

 

 

 

05, 2015 

 

 

 


	MicroRNA Regulation and Cellular Proteostasis in Parkinson's Disease
	Recommended Citation

	tmp.1626791765.pdf.QrDxx

