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ABSTRACT 

 
RNA SPLICING IN NEURON PHYSIOLOGY AND 

NEURODEGENERATIVE DISEASES 
 

Md Faruk Hossain 
 

Gene expression is regulated at multiple levels, including transcription, RNA 

editing, pre-mRNA splicing, mRNA export, translation, and posttranslational 

modifications. Alternative splicing is a process by which exons can be included or 

excluded, giving rise to multiple mRNA isoforms from the same transcript. Alternative 

splicing is an important mechanism in developmental, tissue- and cell-specific control of 

gene expression, and it is key for expanding proteomic diversity and complexity from a 

limited number of genes. Moreover, more than 95% of multiexon genes undergo 

alternative splicing in humans, and about half of all disease-causing point mutations in 

humans affect pre-mRNA splicing, including neurological disorders and cancer. The 

central nervous system comprises the tissues and cells with the highest rate of alternative 

splicing in the body, and RNA-binding proteins play a major functional role in neurons. 

However, the regulatory mechanisms of splicing are still poorly understood. This 

dissertation specifically aims to advance the understanding of regulatory mechanism of 

pre-mRNA splicing. To this end, we collaboratively performed two projects.  

In the first project, we investigated how NOVA, a neuron-specific splicing factor, 

regulates nerve cell-specific alternative splicing of Z+ Agrin — a molecule that is the 

master architect of nerve-muscle synapses at the neuromuscular junction (NMJ). We 

cloned the Ciona ortholog of NOVA, which is present as a single copy gene in tunicates, 

and that of Agrin, and dissected the regulatory mechanism of alternative splicing of Z+ 



 
 

Agrin by Nova. Moreover, we characterized their function and expression pattern during 

larval development, which we will discuss in detail in Chapter 2 of this dissertation.   

The second project was a case study where we investigated how mutations in the 

SLC25A10 gene cause epileptic encephalopathy by disrupting pre-mRNA splicing. 

SLC25A10 codes for a solute carrier protein and is a part of complex I in mitochondria. 

The patient inherited 3 mutations: 1 from the mother and 2 from the father. The maternal-

derived mutation introduces a stop codon in exon 3. Mutations from the paternal allele 

are located in exon 9 and intron 10. Although the exonic mutation is a synonymous 

mutation, the patient had very low levels of SLC25A10 mRNA and lacked protein at 

detectable levels. Using minigene splicing assay we investigated the molecular 

mechanism underlying disease pathology in the patient. In Chapter 3 of this dissertation, 

we will discuss how paternal-derived mutations lead to aberrant splicing.
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CHAPTER 1  

 

INTRODUCTION  
 

The focus towards the understanding of gene expression regulation largely shifted 

after the completion of human genome sequencing projects. Gene regulation is a set of 

complex biological processes that help genetic information to flow from DNA to RNA to 

proteins, which is known as the central dogma of biology. Gene regulation involves 

several processes involving chromatin remodeling, transcription, post-transcriptional 

regulation (pre-mRNA splicing/alternative splicing), mRNA export and editing, 

translation, and posttranslational modifications. Alternative splicing (AS) is one of the 

most critical steps in gene regulation, which results in multiple proteins with often 

distinct functions from a single gene. Compared with other tissue types, AS is highly 

abundant in the brain. Emerging evidence has shown that the disruption of AS plays a 

significant role in many human diseases, including cancer, diabetes, and 

neurodegenerative diseases. In this dissertation, we show the importance of pre-mRNA 

splicing in neuron physiology and neurodegenerative disorders. This chapter gives a brief 

introduction and background information related to splicing and its role in neurological 

disorders.    

1.1 Gene splicing and alternative splicing   

Gene expression is regulated at multiple levels, including transcription, RNA 

editing, pre-mRNA splicing, mRNA export, translation, and posttranslational 

modifications. After a gene is transcribed into pre-mRNAs, introns are spliced out and 
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exons are joined together to make mature mRNA transcript(s) in a process called pre-

mRNA splicing. Pre-mRNA splicing was first detected in adenovirus in the 1970s (Chow 

el al., 1977; Berget el al., 1977) and later splicing was discovered in all eukaryotes, 

including yeast, plants, and animals. While constitutive pre-mRNA splicing produces a 

single transcript from a gene, AS on the other hand produces multiple mRNA from the 

same pre-mRNA transcript by specifically including or excluding alternative exon(s). 

Approximately 95% multiexonic human genes undergo AS (Gilbert, 1978; Pan et al., 

2008). In fact, AS mechanism explains the tremendous number of protein variants from a 

limited repertoire of ~25,000 genes in human and is a major source of proteomic 

diversity and complexity (Pan et al., 2008). One of the noticeable examples of proteomic 

diversity by AS is the Drosophila Dscam gene. Dscam is a member of the 

immunoglobulin superfamily required for axon guidance (Schmucker et al., 2000) and 

through 95 alternative exons has the potential to generate 38,016 distinct axon guidance 

receptors. That is a staggering number of different isoforms originating from a single 

gene that exceeds the total number of genes present in the Drosophila genome (Misra et 

al., 2002). 

1.2 The classification of alternative splicing  

In eukaryotes, several different functional protein isoforms can be produced by 

AS. The regulation of AS depends on a combination of tissue-specific and universally 

expressed trans-acting RNA-binding factors that interact with cis-acting elements on the 

pre-mRNA molecule. Precise AS regulation is biologically and physiologically important 

for normal development. The completion of genome sequencing has provided important 

insights into the various modalities of pre-mRNA splicing. There are seven major types 
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of AS described so far. About 40% of the AS type is the skipped exon (SE), also known 

as cassette exon (Sugnet et al., 2004; Kim et al., 2007). Cassette exons can be included or 

excluded in the mature mRNA. Multiple cassette exons give rise to another splicing 

pattern known as mutually exclusive cassette exons. In this case the final processed 

mRNAs always include only one of the available alternative exon cassettes. Another two 

types of splicing modalities are the lengthening or shortening of an exon with the 

differential use of alternative 5’ and alternative 3’ splice sites. The regulatory potential of 

AS can be expanded by two other modalities where alternative polyadenylation sites and 

alternative promoter sites can be utilized. In another mode of AS, the intron can be 

included in the mature mRNA and the process is called intron retention. Moreover, AS 

can be combinatorial – meaning that multiple modes of the above-mentioned AS events 

can be observed in the mature mRNA (Black et al., 2003).  

1.3 The splicing machinery and regulatory network of alternative 

splicing  

Constitutive splicing and AS are strictly controlled by complex interactions of 

many cis-regulatory elements and trans-acting RNA-binding proteins (RBPs). Splicing is 

performed by a large and dynamic complex called the spliceosome that is composed of 

small ribonucleoprotein particles (snRNPs). The splicesome core is composed of four 

small ribonucleoprotein particles (snRNP U1, U2, U4/U6 and U5) and numerous 

auxiliary proteins that are assembled together to execute a series of steps involved in 

splicing, including looping the intron, excising the intron, and joining the exons. Mass 

spectrometric analysis revealed that the spliceosome is one of the largest protein 

complexes in mammals and it is assembled by more than 300 proteins (Burge et al., 
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1999; Zhou et al., 2002; Barbosa-Morais et al., 2006;). The fundamental splicing signals 

are universal; however, the level of conservation varies in different exons/introns and 

organisms. Each intron is almost invariantly marked by a GU dinucleotide at the 5’ end 

(5’ splice site, or 5’ss), and an AG dinucleotide at the 3’end (3’ splice site or 3’ss). 

Moreover, a branch point sequence (BPS) upstream of the 3’ss and a polypyrimidine tract 

between the BPS and the 3’ss are other important signals. Normally, constitutive exons 

tend to have strong 5’ and 3’ ss, while alternative exons have relatively weaker 5’ and 3’ 

ss, therefore other RNA-binding proteins play a critical role on splice sites recognition 

(Stamm et al., 1994).  

RBPs/splicing factors act together with the spliceosome to from extensive protein-

protein and protein-RNA complexes to control the expression of functionally distinct 

isoforms in specific tissues and developmental stages by promoting or blocking the 

inclusion of alternative exon(s) in the final processed mRNAs. While the spliceosome 

acts on the primary splicing signals (exon-intron junction, branchpoint A site in the 

intron, and intron-exon junction) to perform splicing, RBPs act on cis-acting specific 

sequences either in exons or in introns to execute AS. Cis-acting sequences on pre-

mRNA are generally divided into four categories: exonic splicing enhancers and silencers 

(ESEs and ESSs), and intronic splicing enhancers and silencers (ISEs and ISSs) (Cartegni 

et al., 2002). Interactions between the cis-acting regulatory elements and trans-acting 

splicing factors determine splicing outcome. RBPs are key regulators of AS, and their 

expression is often developmentally regulated and also tissue-specific. RBPS are of two 

types: AS activators and AS repressors. For instance, SR proteins promote inclusion of 

alternative exon(s) by binding to ESEs (Shen et al., 2004) and heterogeneous 
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ribonucleoproteins (hnRNPs) block inclusion of alternative exon(s) when bound to ESSs 

(Del Gatto-Konczak et al, 1999). There are about 1,000 RBPs in the human genome with 

approximately 40 different types of RNA-binding motifs, including RNA-recognition 

motifs, K-homology (KH) domains etc (Lunde et al., 2007). Expression of RBPs is often 

cell- or tissue-type specific. They can be expressed in different combinations to increase 

proteomic diversity, and they often have multiple target genes. Subsequently, aberrant 

expression or disrupting the function of a single RBP often affects posttranscriptional 

regulation of numerous pre-mRNA transcripts, a phenomenon frequently reported in 

human diseases associated with RBPs.   

1.4 The role of alternative splicing in neuron physiology  

Previous studies clearly showed that there is extensive AS regulation across brain 

regions and across developmental stages (Dillman et al., 2013). Moreover, compared to 

other cell types neurons have the highest number of alternative exons, thus producing a 

greatest diversity of protein isoforms compared to other tissues (Porter et al., 2018). For 

example, neurons generate neurotransmitter receptors with different specificities and 

coordinates the activity of protein networks at the synapse (Ule et al., 2005). The voltage-

gated Ca2+ channels (VGCCs) in the presynaptic terminal are key determinants of cell- 

and synapse-specific neurotransmitter release properties, and the genes encoding VGCC 

subunits have the potential to generate thousands of splice variants (Lipscombe et al., 

2013). For instance, AS of two mutually exclusive alternative exons (37a and 37b) in the 

Cav2.1 (the so-called P/Q-type Calcium channel) α1 subunit demonstrate acute shift of 

neuronal network activity, while one isoform promotes synaptic depression, the other 

drives synaptic facilitation (Thalhammer et al., 2017).  
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The NMJ, possibly the best-understood mammalian synapse, is developed, 

formed, and maintained by a large number of molecules that enable precise signal 

transmission from spinal motor neurons to skeletal muscle. According to RefSeq gene 

annotation database which adopts only experimentally-proven splicing isoforms, 8 out of 

16 genes (ACHE, AGRN, CHAT, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, 

COLQ, DOK7, LAMB2, LRP4, MUSK, RAPSN, SCN4A, and SYT2) expressed at the 

NMJ are alternatively spliced (O’Leary et al., 2016). According to the most extensive 

AceView gene annotation database (Thierry-Mieg and Thierry-Mieg, 2006), 13 of the 16 

NMJ genes are alternatively spliced, whereas CHRNE, CHRNG, and SCN4A are not. In 

this dissertation, we will discuss the role of AGRN in NMJ development, formation, and 

maintenance and our investigation of regulatory mechanism of AS of AGRN by NOVA 

(see chapter 2 for detail).    

1.5 Aberrant splicing in neurodegenerative disorders    

The central nervous system comprises the tissues and cells with the highest rate of 

AS in the body (Xu et al., 2002), and RBPs play a major functional role in neurons 

(Lenzken et al., 2014), highlighting the critical importance of RBPs and splicing in 

human biology and disease pathogenesis. Moreover, up to 50% of all disease-causing 

mutations affect pre-mRNA splicing, including many cancers and neurodegenerative 

disorders (Teraoka et al., 1999; Ars et al., 2003) including, Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), Spinal Muscular Atrophy (SMA), 

and Congenital Myasthenic Syndrome (CMS). Pre-mRNA splicing is disrupted in a large 

number of genes in AD patients (PSEN1, PSEN2, GRN, APP, APOE, BACE, PIN1, and 

MAPT), in PD patients (PARK2, SNCA, SRRM2), in HD patients (BDNF) (reviewed in 
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Mills and Janitz, 2012). To date, 30 genes (reviewed in McMacken et al., 2017) have 

been reported to be CMS-related genes, many of those genes display abnormal AS 

including CHRNE, DOK7, CHRNA1, RAPSAN, and COLQ genes (reviewed in Rahman 

et al., 2015). AS dysregulation has been recently reported in autism spectrum disorders 

(Irimia et al., 2014; Parikshak et al., 2016; Quesnel-Vallieres et al., 2016; Xiong et al., 

2015) and schizophrenia (Cai et al., 2020).  

Pre-mRNA splicing patterns can be affected by mutations in splice sites, cis-

regulatory elements, or trans-acting RBPs.  An interesting example is the skipping of 

exon 7 of survival of motor neuron 2 (SMN2) due to a single nucleotide (nt) 

polymorphism (C to T) at position 6 that disrupts an ESE element recognized by 

SF2/ASF (Pellizzoni et al., 1998; Cartegni and Krainer, 2002), and creates an ESS 

element recognized by hnRNP A1 (Kashima et al., 2003). SMA is a devastating 

autosomal-recessive disorder associated with low expression levels of SMN1 protein due 

to homologous deletion or disruption of SMN1. SMN2, which is an almost identical copy 

of SMN1 produces a truncated isoform lacking exon 7 which is unstable and 

nonfunctional (Khoo et al., 2009; Lorson et al., 1998; Lorson et al., 1999; Burnett et al., 

2009). In Mattioli et al. (2020), 6 individuals have been reported with a de novo 

frameshift mutation in the RNA-binding protein NOVA2 that results in a common C-

terminal extension. All 6 of the individuals are affected by a severe form of 

neurodevelopment disorders. Using zebrafish ortholog of NOVA2, they have shown that 

downregulation of NOVA2 affects neurite outgrowth. Moreover, downregulation of 

NOVA2 alters the splicing of 41 genes in human neural cells. In chapter 3 of this 

dissertation, we will discuss a case study where we investigated aberrant splicing of the 
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SLC25A10 gene and explained disease pathology in a patient with epileptic 

encephalopathy. 
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CHAPTER 2  
 
A CONSERVED NOVA-DEPENDENT 
ALTERNATIVE SPLICING PROGRAM CONTROLS 
NEUROMUSCULAR JUNCTION FUNCTION IN 
THE TUNICATE CIONA ROBUSTA 
 

2.1 ABSTRACT 

Tunicates are marine invertebrates and are the closest living relatives to 

vertebrates. The swimming larva of the tunicate Ciona robusta is an emerging animal 

model to study developmental and evolutionary biology. Its nervous system is comprised 

of a mere 177 neurons distributed rostro-caudally in a brain vesicle, a motor ganglion, 

and a nerve cord and its larval connectome has been completely mapped. Due to its small 

size, cellular simplicity, rapid development, and compact genome that has not undergone 

the duplications seen in vertebrates, Ciona is particularly amenable to molecular 

perturbation and imaging. Here we show that Ciona can be a powerful model organism to 

study NMJ biology and neurodegenerative and neuromuscular disorders, including 

congenital myasthenic syndrome (CMS).  

NOVA1 and NOVA2 are neuron-specific AS factors and are target antigens in 

patients with an autoimmune neurodegenerative disorder. One of the targets of NOVA is 

a neuron-specific splice form of the ubiquitously expressed gene AGRIN. Termed Z+ 

AGRIN, this splice variant activates the MuSK signaling pathway by interacting with the 

transmembrane receptor LRP4, thus promoting clustering of acetylcholine receptors 
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(AChRs) at the postsynaptic terminal., Interestingly, AGRIN mutations that mimic Z- 

AGRIN cause CMS.  

We cloned the Ciona ortholog of NOVA, which is present as a single copy gene in 

tunicates, and that of Agrin, and characterized their function and expression pattern 

during larval development. We discovered that, as in vertebrates, Ciona Agrin (CiAgrin) 

also undergoes AS to generate the Z+ isoforms in Ciona, indicating that the Nova-Agrin-

Lrp4 pathway for AChR clustering at the NMJ is shared between tunicates and mammals. 

Nova harbors 3 KH-type RNA-binding domains and specifically recognizes YCAY 

clusters on pre-mRNA. Ciona Nova (CiNova) requires the first two KH domains to 

mediate Z exon inclusion, and it does so via a bipartite intronic splicing enhancer 

downstream of the Z exons.  

We also determined that at least two consecutive YCAY repeats from any of the 

two clusters are needed to promote exon inclusion at Z site. Moreover, we discovered 

unique function of the N/C-terminus and the KH3 domain of CiNova. It appears that, in 

Ciona, the KH3 domain is a negative regulator of AS and both N- and C- terminus act 

together to inhibit the negative action of KH3. We discovered that CRISPR KO of 

CiNova and CiAgrin phenocopies the findings in Nova and Agrin KO mice by drastically 

reducing the number of AChRs clusters at the NMJ. We provide evidence that the neural-

specific AS program of Z+ Agrin is conserved between tunicates and mammals, showing 

for the first time that Ciona can be a powerful organism to study the biology of 

neurodegenerative and neuromuscular disorders.   
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2.2 BACKGROUND 

2.2.1 The NOVA protein family and its role in brain physiology  

In mammals, the NOVA family is comprised of two highly homologous proteins 

encoded by two genes (NOVA1 and NOVA2), which were first discovered as antigens in 

Paraplastic Opsoclonus Myoclonus Ataxia (POMA)- a manifestation of abnormal motor 

control at the level of brainstem and spinal cord (Darnell et al., 1996; Buckanovich et al., 

1996; Buckanovich et al., 1997). NOVA are neuron-specific AS factors that regulate the 

AS of neuronal pre-mRNA transcripts (such as transcripts of the AGRN gene) in the 

central nervous system (Buckanovich et al., 1996; Buckanovich et al., 1997). Both 

NOVA1 and NOVA2 possess three K-homology (KH) RNA-binding domains (KH1, 

KH2 and KH3) and it appears that it is the third KH domain (KH3) that specifically binds 

to YCAY motifs on pre-mRNA transcripts to regulate inclusion or skipping of specific 

alternative exons (Buckanovich et al., 1997; Jensen et al., 2000). Consistently, de novo 

frameshift mutations that ablate this RNA-binding domain abolish the pre-mRNA-

binding activity of NOVA (Mattioli et al., 2020).  

In the central nervous system, Nova1 and Nova2 are expressed reciprocally, with 

Nova2 being highly expressed in the cortex and hippocampus, while Nova1 is highly 

expressed in midbrain and spinal cord (Yang et al., 1998; Saito et al., 2016). Moreover, 

Nova1 is highly expressed in the ventral spinal cord while Nova2 is highly expressed in 

the dorsal spinal cord (Buckanovich et al., 1997). Both Nova1 and Nova2 are also 

expressed in white adipocytes (Vernia et al., 2016). The finding that there are about 700 

identified Nova1/Nova2 alternate exon targets on neuron-specific pre-mRNA (Zhang et 

al., 2010), is a strong pointer to the role of both Nova1 and Nova2 in the regulation of AS 

of neuron-specific RNA transcripts (Saito et al., 2016). Nova1 and Nova2 possess nearly 
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identical RNA-binding domains, and both recognize the same YCAY sequence on pre-

mRNA (Buckanovich et al., 1997; Jensen et al., 2000; Sugimoto et al., 2012). These two 

splicing regulators can therefore interact with and regulate AS on the same pre-mRNA 

transcript (Saito et al., 2016). About 80% of the binding sites of Nova2 on pre-mRNA are 

found on introns, implying a preferential binding of this splicing regulator to introns, 

while Nova1 targets are almost equally distributed in introns and exons (Saito et al., 

2016). This spatial distribution of the RNA-binding targets suggests a possible 

mechanistic difference in the AS events driven by these two Nova homologues (Saito et 

al., 2016).  

The distinct expression pattern of Nova1 and Nova2 denotes that each of these 

splicing regulators appears to have a unique role in different brain areas and different 

neuronal cell types (Saito et al., 2016). In the brain cortex, where Nova2 is highly 

expressed, a total of 60 transcripts were significantly changed by Nova2 loss of function, 

while only 2 transcripts were altered in the brain cortex by Nova1 loss of function (Saito 

et al., 2016). This scenario could be partially explained by the low expression levels of 

Nova1 in brain cortex. In the midbrain and hindbrain region of E18.5 mice, where Nova1 

is highly expressed, 119 Nova1-dependent AS events were changed by loss of gene 

function (Saito et al., 2016). Moreover, in these brain regions, only one AS event (Robo2 

exon 6b), common to both Nova1 and Nova2 was slightly altered (Saito et al., 2016).  

Nova proteins-mediated splicing regulation plays a critical role in the 

development of the central nervous system (Leggere et al., 2016; Saito et al., 2016). The 

splicing regulatory role of Nova proteins has been implicated in neuronal migration in 

both cortical neurons and Purkinje neurons (Yano et al., 2010). Nova2 is also important 
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for the induction of long-term potentiation of slow inhibitory post synaptic current in 

hippocampus neurons (Huang et al., 2005). In addition to the above-mentioned Nova-

mediated roles, four research articles (Ruggiu et al., 2009; Leggere et al., 2016; Saito et 

al., 2016; and Saito et al., 2019) expand the knowledgebase on the functional role of 

Nova family proteins in the development of the central nervous system. The AS outcome 

of Nova proteins is based on their binding position on the target pre-mRNA (Dredge et 

al., 2005; Allen et al., 2010). Nova proteins binding to their binding sites upstream or 

within an alternative exon represses exon inclusion (Dredge et al., 2005). In contrast, 

Nova-mediated effect on alternative exon inclusion enhancement can be attributed to 

binding of the Nova protein downstream of an alternative exon (Dredge et al., 2005). In 

addition, the Nova-mediated splicing effect on alternate exon inclusion may be due to its 

blocking of the binding of both essential splicing factors like U1 snRNP, and non-

essential splicing factors like SR proteins, onto the pre-mRNA transcript (Dredge et al., 

2005). Nova2 expression is down regulated by the RE-1-Silencing Transcription factor 

(REST), a transcription repressor that is highly expressed in non-neuronal cells and early 

embryonic neuronal cells but is silenced in mature differentiated neuronal cells (Mikulak 

et al., 2012). On the contrary, Nova1 expression does not appear to be regulated by REST 

in both neuronal and non-neuronal cells (Mikulak et al., 2012).   

2.2.2 Functions of Nova1  

Nova1 is highly expressed in midbrain and ventral spinal cord (Yang et al., 1998; 

Saito et al., 2016) but is also expressed in non-neuronal cells, with high expression in 

pancreatic beta cells (at levels comparable to brain) and white adipose tissue, and low 

expression in the cervix, colon, muscle cells, liver, spleen, and lungs (Eizirik et al., 2012; 
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Villate et al., 2014; Meldolesi et al., 2020; Vernia et al., 2016). Although Nova1 null 

(Nova1-/-) mice in Jensen et al. (2000) were indistinguishable from their littermates, they 

died postnatally due to a progressive motor defect caused by increased apoptotic death of 

spinal and brainstem neurons. In Ruggiu et al. (2009), Nova1-/- mice lacked defects in 

Agrin Z+ AS in brain and spinal cord, and in AChR clustering or neuromuscular 

innervation at the NMJ. Nova1-/- mice in Saito et al., 2016 did not portray any defects in 

neuronal development. They had normal parameters in dorsal interneuron development 

and differentiation, axon outgrowth and corpus callosum (CC) formation. In addition, 

these mutant mice lacked the defects displayed by Nova2-/- mice in both ventral 

diaphragmatic and auditory efferent innervation (Saito et al., 2016; Leggere et al., 2016).   

Nova1 does not appear to have a regulatory role in the axon guidance process in 

the brain cortex (Saito et al., 2016). Specifically, Nova1 does not appear to regulate the 

AS of key exons in axon guidance-related genes, including: Dcc exon 17, Slit2 exon 28b, 

Robo2 exons 6b and 21, Epha5 exon 7, Arhgef12 exon 4, Ppp3cb exon 10b, Neo1 exon 

26, and Rock1 exon 27b (Saito et al., 2016). The missing regulatory role of Nova1 in the 

brain cortex could however be due to the low expression levels of Nova1 in the brain 

cortex. It would be interesting to observe the effects of Nova1 overexpression in the brain 

cortex.   

Nova1 is an enhancer of exon inclusion during AS. For example, Nova1 enhances 

the inclusion of exon 9 during the AS of the gamma-aminobutyric acid A receptor, 

gamma 2 subunit (Gabrg2) pre-mRNA in the brain and human pancreatic islets (Eizirik et 

al., 2012; Dredge and Darnell, 2003; Jensen et al., 2000a). Nova1 also enhances the 
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inclusion of exon 3A (E3A) during AS of the of glycine receptor a2 (GlyRα2) pre-mRNA 

(Jensen et al., 2000a; Polydorides et al., 2000).  

In pancreatic cells, Nova1 has a functional role in both transcription and AS 

regulation, but its role is more pronounced in splicing regulation (Villate et al., 2014). In 

these cells, Nova1 is a master regulator of the AS of 4961 isoforms, involved in a wide 

array of cellular functions, including: apoptosis, insulin receptor signaling, exocytosis, 

transcription regulation, and cell signaling (Villate et al., 2014). Examples of Nova1-

regulated genes in pancreatic cells include apoptosis genes (Casp3, Apaf1), insulin 

receptor signaling genes (INSR, FoxO1), calcium signaling genes (Cacna1b, Cacna1c, 

Cacna1d), exocytosis genes (Apba1, Cadps, Cdc42, Gnai3, Snap25), transcription 

regulation genes (Pax6, FoxO1, FoxO3) and some other cell signaling genes (Villate et 

al., 2014).   

The high expression of Nova1 in both the brain and pancreatic islets denotes a 

common splicing regulatory role and a common mechanism of action in these two 

organs. For example, the exocytosis process of neurotransmitter release in the neurons is 

similar to that of insulin release from pancreatic beta cells (Juan-Mateu et al., 2017). In 

fact, 80% of Nova1-regulated genes are highly expressed in both the brain and pancreatic 

beta cells (Villate et al., 2014). Examples of these genes are: Gabrg2, Neuroligin and 

Neurexin family members, inhibitory synapse-associated neuroligin and neurexin binding 

partners (Villate et al., 2014; Eizirik et al., 2012). The mechanism of Nova1 splicing 

regulation appears to be similar in both the brain and pancreatic beta cells (Villate et al., 

2014).  



16 
 

In pancreatic beta cells, Nova1 also regulates the in vitro splicing of several 

calcium channels proteins, including the alpha-1b, alpha-1c, alpha-1d subunits of the 

voltage-dependent N-type calcium channel (Cacna1b, Cacna1c, Cacna1d) mRNA (Villate 

et al., 2014). On the contrary, the splicing regulation of calcium channel proteins in the 

brain is regulated by Nova2 (Allen et al., 2010). In the brain, Nova2 enhances the 

inclusion of exon 24a in Cacna1a (CaV2.1) and Cacna1b (CaV2.2), but also represses the 

inclusion of exon 31a in both CaV2.1 and CaV2.2 mRNA (Allen et al., 2010).  

Nova1 loss of function in pancreatic cells decreases voltage-dependent calcium 

current due to splicing defects in the calcium channels transcripts and thus downregulates 

calcium signaling-mediated insulin exocytosis (Villate et al., 2014). In addition, Nova1 

splicing action on insulin secretion genes (phospholipase PLCβ1 and the vesicle fusion 

protein SNAP25) also regulates insulin secretion (Villate et al., 2014). Specifically, 

Nova1-mediated effect on insulin secretion entails the AS of the exon b-containing 

isoform of PLCβ1 (PLCβ1b) and enhances the inclusion of alternative exon 5b of 

SNAP25 pre-mRNA during AS (Villate et al., 2014).   

2.2.3 Functions of Nova2  

Nova2 is highly expressed in the cortex and hippocampus regions of the brain 

(Saito et al., 2016) and is sequentially expressed in a dorsal-ventral manner in the spinal 

cord, with the greatest expression in the dorsal spinal cord, although the large motor 

neurons of the ventral spinal cord express significant levels of both Nova1 and Nova2 

(Yang et al., 1998). In non-neuronal cells, Nova2 is expressed in the lungs (Meldolesi 

2020; Yang et al., 1998), endothelial cells (Giampietro et al., 2015), and in white 

adipocytes (Vernia et al., 2016).  
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Reduced expression of Nova2 (haploinsufficiency) leads to spontaneous epilepsy 

(Eom et al., 2013). Five de novo NOVA2 mutations (2 deletions, 1 insertion, and 2 

duplications) and 1 deletion mutation not present in the mother, in the last and largest 

exon of NOVA2 are implicated in a serious neuro-developmental disorder characterized 

by motor delay, speech delay, brain malfunction, seizures, CC thinning, hypotonia and 

feeding difficulties (Mattioli et al., 2020). These mutations cause a frameshift at the 

mutation site of the fourth coding exon, that results in a long C‐terminal (134 amino acids 

long) tail and the loss of the third KH (KH3) domain, in the stably expressed NOVA2 

protein (Mattioli et al., 2018).  

Nova2 knock out (Nova2-/-) mice in Ruggiu et al., 2019 had minimal defects in Z+ 

Agrin splicing in both the brain and spinal cord, AChR clustering or neuromuscular 

innervation in the motor neurons of the spinal cord. On the contrary, Nova2 in Saito et 

al., 2016, had a profound splicing regulatory role in the brain cortex, and although 

Nova2-/- mice were similar in phenotype to their littermates at birth in this study, they 

died in less than three weeks due to progressive motor dysfunction.   

Nova2 has a profound role in the development of the brain cortex and is integral 

for axon pathfinding and outgrowth in cortical CC axons (Leggere et al., 2016; (Mattioli 

et al., 2020). Nova2 is also required in the formation and extension of axonal tracts in the 

brain (Mattioli et al., 2020). Nova2 expression increases gradually during mouse 

development from E12.5 to E18.5 (Saito et al., 2016), with high expression in the cortical 

plate and subplate (a region where post-mitotic neurons are found at E18.5 in high 

numbers), implying a developmental regulation role in neural progenitor cells 

differentiation (Saito et al., 2016).   
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The role of Nova2 in this developmental process is related to the AS of five axon 

guidance-related genes: Dcc, Robo2, Epha5, Slit2, and Neo1, in which the loss of 

function of Nova2 results in the aberrant inclusion of developmentally-regulated exons 

into these axon guidance gene transcripts (Saito et al., 2016). Although Nova2 is highly 

expressed in the dorsal spinal cord (Yang et al., 1998; Saito et al., 2016), its splicing 

regulatory effect is only evident in motor neurons innervating the ventral diaphragm 

muscles and auditory efferent axons (Saito et al., 2016). Nova2 regulates the AS of key 

genes involved in neurogenesis (Mattioli et al., 2018). For example, it promotes inclusion 

of exon 26 of Neogenin1 (NEO1) and represses the inclusion of exon 14 of Amyloid Beta 

A4 Precursor‐ like protein 2 (APLP2). Both NOVA2 silencing and frameshift mutations 

affecting the last exon of NOVA2 (Mattioli et al., 2020; Mattioli et al., 2018) perturb the 

Nova2-mediated splicing events of these two genes in in vitro models (Mattioli et al., 

2020; Mattioli et al., 2018). The loss of NOVA2 function greatly affects axonal formation 

and synapse function in both in vivo and in vitro settings (Mattioli et al., 2020; Mattioli et 

al., 2018; Ruggiu et al., 2009). Important to note is that the mutant NOVA2 variants 

(specifically Mut1) and the wild type NOVA2 counterpart had a comparable effect in 

axonal outgrowth in vivo (Mattioli et al., 2020). This might be attributed to the dominant 

effect of the non-mutated allele (Mattioli et al., 2020), a notion that can be further 

supported by the finding that human Mut1 NOVA2 (mutant variant 1) alone could not 

rescue the splicing defects caused by NOVA2 orthologue silencing in zebrafish but could 

do so when injected together with wild type NOVA2 mRNA (Mattioli et al., 2020).  

The axon guidance regulation of Nova2 in the brain cortex appears to be 

attributed to the developmentally-regulated AS of two netrin receptors: Dcc exon 17 (Dcc 
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long) and Neo1 exon 27 (Saito et al., 2016). In the spinal cord however, the dual action 

of Nova1 and Nova2 is required for the regulation of Dcc exon 17 in the developing 

spinal commissural neuron (Leggere et al., 2016). Netrin proteins are guidance protein 

that are produced in the ventral floor plate and that promote commissural neuron 

outgrowth by attracting it towards the ventral plate (Stoeckli, 2018; Duman-Scheel, 

2009).  Although Nova2 loss of function leads to agenesis of the corpus callosum (ACC), 

Dcc-long alone could not rescue the ACC defect in Nova2-/- mice (Saito et al., 2016). 

Dcc-long, however, was able to restore the normal spinal commissural neuron 

development in Nova1/2 dKO mice (Leggere et al., 2016).  

The splicing regulatory role of NOVA2 is also critical for brain development, 

neurite outgrowth, and neuronal cell differentiation (Saito et al., 2019; Mattioli et al., 

2020). Loss of function of NOVA2 significantly affects neuronal migration (Yano et al., 

2010) and neurite outgrowth (Mattioli et al., 2020). The de novo frameshift mutations in 

Mattioli et al. (2020) also significantly altered neuronal cell differentiation and neurite 

outgrowth in vivo.   

Nova2 mediates its splicing regulatory effect in different parts of the central 

nervous system by discriminately binding to specific neurons and neuronal cell types, 

hence regulating differently the same RNA transcripts in different neurons and neuronal 

cells (Saito et al., 2019). By using the Nova2 cTag-CLIP method, Saito et al. (2019) 

discovered that the binding profiles of Nova2 are significantly different between 

inhibitory (GABAergic) and excitatory (glutamatergic) neurons in the developing brain 

cortex, and that the AS events in these two neuronal populations are different. This 

discriminatory splicing effect of Nova 2 appears to be critical to the proper development 
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of hippocampus and neocortex. The discriminatory binding of Nova2 is also evident in 

the cerebellum, where Nova2 binds selectively to transcripts in Purkinje cells inhibitory 

neurons, with high binding specificity to 3' UTR binding sites on RNA transcripts (Saito 

et al., 2019). Loss of this Nova-mediated effect in the Purkinje cells leads to cell-specific 

progressive motor discoordination and cerebellar atrophy. Taken together, these findings 

suggest a Nova2-specific and discriminatory binding on the same transcript in different 

neurons and cell types (Saito et al., 2019).  

The mechanism of Nova2 AS regulation appears to be due to its negative 

interaction effect with another splicing regulator, PTBP2 (Saito et al., 2019). To this 

effect, Saito et al. (2019) found out that Nova2 increases the removal of introns in the 

alternatively spliced transcripts, hence blocking the binding of PTBP2 to the intronic 

regions of the mRNA transcript.  

Nova2 is also highly expressed in endothelial cells during angiogenesis and its AS 

role is critical for vascular lumen formation and endothelial cell polarity (Giampietro et 

al., 2015).  Loss of Nova2 disrupts these processes and leads to altered endothelial cells 

polarity and impaired vascular lumen formation (Giampietro et al., 2015). Nova2 splicing 

regulatory role in these cells involves the AS of transcripts of key effectors of endothelial 

cell polarity, including: Par3 (exon 7 inclusion), Magi1 (exon 13a inclusion), Rap1GAP 

(exon 18a suppression), Dock6 (exon 24 suppression), Dock9 (exon 37a suppression), 

DBS (exon 37 inclusion) and Pix-α (exon 17 suppression) (Giampietro et al., 2015).   

2.2.4 Dual functional role of Nova1 and Nova2  

Nova1 appears to play a cooperative function with Nova2 (Ruggiu et al., 2009; 

Leggere et al., 2016; Saito et al., 2016). Nova1 and Nova2 proteins appeared to play a 
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dual role in motor nerve function through: (1) NMJ formation, through the AChR 

clustering function of the Nova-spliced, Z exon-containing (Z+) Agrin proteins and (2) 

the motor nerve functioning, through the motor firing functional role of unidentified 

Nova targets at the proximal motor nerve region (Ruggiu et al., 2009). Nova1/2 double 

knock out (dKO) mice in Ruggiu et al. (2009) were paralyzed due to defective motor 

function both at the motor nerve and NMJ. Nova1/2 loss of function also disrupts dorsal 

interneuron development and completely affects auditory efferent innervation (Saito et 

al., 2016).  

During the spinal commissural neuron development, Nova 1/2 dKO mice display 

defects in the netrin-dependent axon outgrowth process due to disruption of the AS of 

Dcc (deleted in colorectal carcinoma) long isoform (Leggere et al., 2016). Dcc is a 

netrin-specific receptor on the axon growth cone (Stoeckli 2018; Duman-Scheel 2009). 

The mechanism of the cooperative action of both Nova1 and Nova2 in the brain and 

spinal cord is not clear. These two Nova homologues are expressed in a reciprocal 

manner in central nervous system and their synergistic effect on neuronal development is 

still unelucidated.   

Both Nova1 and Nova2 are highly expressed in white adipocytes and they both 

regulate a wide array of AS events associated with diet-induced obesity and adipose 

tissue thermogenesis, including exon inclusion (768 exons), mutually exclusive exon 

repression (128 exons), intron activation (99 introns), 64 alternative 5’ splice sites (64 

sites), and 110 alternative 3’ splice (Vernia et al., 2016). The splicing regulation of both 

Nova1 and Nova2 is essential for metabolism and energy expenditure of high fiber diet 

and is thus a promoter of diet induced obesity (Vernia et al., 2016).  
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2.2.5 Nova/Agrin function is critical for NMJ formation, development, and 
maintenance  

The AGRN gene encodes a large protein named AGRIN comprised of around 

2000 amino acids (~200 kDa) (Nitkin et al., 1987), and has been cloned from several 

vertebrates including rat (Rupp et al., 1991), chick (Tsim et al., 1992; Denzer et al., 

1995) marine ray (Torpedo californica) (Smith et al., 1992), man (Groffen et al., 1998), 

and the invertebrate C. elegans (Hurs et al., 2007). Agrin is one of the first proteins found 

to be involved in the formation and development of the NMJ (Burden et al., 2018). NMJ 

formation is a multistep process requiring sophisticated interaction between 

presynaptically-secreted motoneuron-derived Agrin and LRP4 (low-density lipoprotein 

receptor-related protein 4) that activates the receptor tyrosine kinase MuSK (muscle-

specific kinase) on postsynaptic membrane. Consequently, AChRs aggregate into clusters 

at the postsynaptic membrane, an essential prerequisite for fast, robust, and reliable 

synaptic transmission (Zhang et al., 2008; Zong et al., 2012; Zong and Rongsheng, 

2013). A reduced number of AChRs at the NMJ leads to defective synaptic transmission 

and is responsible for variety of CMS.  

Agrin undergoes AS at three different sites termed X, Y, and Z sites with inserts 

of 3/12, 4, and 8/11/19 amino acids (AAs), respectively (Gautam et al., 1996), making 

Agrin a unique model gene to study regulatory mechanism of AS. In mammals, there are 

two alternative exons at the Z site, termed Z8 and Z11 as they encode for 8 and 11 amino 

acid (AA) peptides, respectively (Gautam et al., 1996). Expression of Z exons is neuron-

specific, thus generating Z+ Agrin in neurons, while Z- Agrin is expressed ubiquitously 

(Gautam et al., 1996). It has been shown that Z8 Agrin is sufficient to induce AChRs 

clusters and is ~1,000-fold more active than Z- Agrin (Gautam et al., 1996). Agrin null 
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mice and motoneuron-specific Z exons KO (knock out) mice (AgrinZ-/Z-) are unable to 

form NMJs and die at birth from diaphragmatic paralysis (Buckanovich et al., 1993; 

Darnell et al., 2003). AS at Z site of Agrin is regulated by Nova (Ruggiu et al., 2009). 

Nova harbors 3 KH-type RNA-binding domains and each KH domain has a GXXG motif 

and a variable loop (Buckanovich et al., 1993; Jensen et al., 2000; Hollingworth et al., 

2012). In vitro RNA selection (Buckanovich et al., 1993; Jensen et al., 2000; Licatalosi et 

al., 2008) along with X-ray crystallography (Lewis et al., 2000) revealed that Nova 

specifically recognizes YCAYs clusters on pre-mRNA transcripts.  Moreover, three 

distinct methodologies, including CLIP (Licatalosi et al., 2008; Ule et al., 2003) splicing 

microarrays (Ule et al., 2005), and bioinformatics analysis (Ule et al., 2006) have led to 

the identification of numerous targets of Nova at the neuronal synapses and also showed 

that Nova binds to YCAY clusters on pre-mRNA in vivo. An in silico study predicted that 

binding of Nova to intronic YCAY clusters promotes inclusion of alternative exons (Ule 

et al., 2006). In mammals, Nova has two members in its gene family: Nova1 and Nova2. 

Nova dKO mice show dramatic reduction in the inclusion of Z exon of Agrin, and the 

animal dies immediately after birth from diaphragmatic paralysis (Ruggiu et al., 2009).   

2.2.6 Ciona robusta as an animal model to study RNA-regulatory networks at the 
NMJ  

Phylogenetically, tunicates (or sea squirts) are invertebrate chordates and are the 

closest living relatives to vertebrates (Delsuc et al., 2006). The invertebrate C. robusta is 

a suitable model organism with many experimental advantages, i.e. small size, rapid 

development, easy maintenance, cellular simplicity, streamlined and compact genome 

that has not undergone the duplications seen in vertebrates. Ciona is particularly 

amenable to molecular perturbation and imaging, and its connectome (Bentley et al., 
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2016) is only the second one to be completely mapped after that of the nematode 

Caenorhabditis elegans (Hrus et al., 2007), which makes it a powerful tool for genetic 

analysis. Adult sea squirts are simple, sessile, filter-feeding animals and their free-

swimming tadpole-like larvae are composed of only ~2,600 cells and display a simplified 

body plan that is chordate in a mode of development (Satoh, 1994; Satoh et al., 1995). 

The tunicate Ciona has emerged as a powerful model for studying chordate-specific 

developmental mechanisms and evolutionary biology (Pennisi, 2002). The dorsally-

located larval central nervous system of Ciona robusta comprises only 177 neurons 

distributed rostrocaudally in a brain vesicle, a motor ganglion, and a nerve cord (Ryan et 

al., 2016). To investigate the regulatory mechanism of AS of neural Agrin by Nova, we 

have cloned cDNA of putative Agrin and Nova genes from the tunicate Ciona robusta. 

We used Ciona for the first time to study regulatory mechanism of AS of neural Agrin. 

The findings are discussed in the following sections. 
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2.3 MATERIALS AND METHODS 

2.3.1 Animal model and mammalian cell  

The tunicate, Ciona robusta, a marine invertebrate was used as an animal model 

in our study. The tissue sample of Ciona was collected to clone full length Agrin and 

Nova. Human HEK293T cells (ATCC) were used to transfect/co-transfect all the 

constructs generated in this study.  

2.3.2 Cloning procedures 

A total of 33 CiAgrin minigene constructs (WT and mutants) and 17 CiNova 

constructs (WT and mutants) were prepared to investigate the regulatory mechanism of 

Nova/Agrin splicing and to discover the specific RNA-binding domain(s). Moreover, 16 

mouse Nova (WT and mutants) were prepared to investigate splicing of mouse Agrin 

minigene mAgrin_31-34-3x-Flag (Saito et al., 2016) (a gift of Dr. Robert B. Darnell from 

Rockefeller University). A mouse Dcc minigene (Leggere et al., 2016) (a gift of Dr. Zhe 

Chen from University of Colorado, Boulder) was also used for verification of our splicing 

assay in our lab. To investigate the disease pathology of epileptic encephalopathy in a 

proband, 9 SLC25A10 minigene constructs, including WT and mutants, were constructed. 

Ciona minigenes and SLC25A10 minigenes were cloned in pCi-neo vector (Promega). 

Mouse Snap25 minigene was cloned in the exon trapping vector pSPL3 (Nisson et al., 

1994; Tompson et al., 2017). Mouse Dcc minigene, is cloned in pDEST26 (Invitrogen). 

cDNA constructs of Ciona and mouse Nova were cloned in pEGFP-C1 vector 

(Clontech). All these vectors contain a CMV promoter, including mAgrin_31-34-3x-Flag 

(Saito et al., 2016). Moreover, cDNA constructs of mouse Nova1, Nova2, Rbfox1, Ptbp2, 
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and Mbln2 were cloned in pCAGGS-3x-Flag vector (a gift from Dr. Chaolin Zhang from 

Columbia University).  

2.3.3 Proof-reading PCR  

A mixture of 5 X buffer (10 μL); 10 mM dNTPs (1 μlL; 10 μM forward primer 

(2.5 μL); 10 μM reverse primer (2.5 μL); template genomic DNA from Ciona robusta (10 

ng); Q5 Hot Start High-Fidelity DNA Polymerase 2,000 U/ ml (New England BioLabs) 

(0.3 μlL was prepared in total volume of 50 μL (diluted in sterile nuclease-free H2O) in a 

PCR tube. Some of the reactions were supported by adding 10 μl of 5 M Betaine Solution 

(Sigma), for a final concentration of 1 M Betaine. PCR reactions were performed in a 

T100 thermal cycler (Bio-Rad) with initial denaturation for 5 minutes at 98 °C; variable 

number of cycles, followed by 2 minutes of final extension at 72 °C and a hold at 4 °C. 

The annealing temperature for each primer pair was calculated using New England 

BioLabs Tm calculator version 1.13.0 (http://tmcalculator.neb.com/#!/ as of April 2021).   

2.3.4 Site-Directed Mutagenesis  

Point mutations (YCAY to YAAY) in Agrin, and deletion mutations in Nova and 

its KH domains (GXXG to GDDG) were introduced by Q5 Hot Start DNA Polymerase 

(Q5 Site-Directed Mutagenesis Kit, New England Biolabs) according to the 

manufacturer. The mutants were cloned into appropriate vectors and were confirmed by 

DNA sequencing.  

2.3.5 Gel extraction  

The PCR product was then purified with a QIAquick Gel Extraction Kit (Qiagen) 

according to manufacturer. The DNA fragment was excised from the agarose gel (made 

http://tmcalculator.neb.com/#!/
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in TAE buffer) with a scalpel. The gel piece was weighed in an Eppendorf tube. 3 

volumes of Buffer QG were added to 1 volume gel. This was followed by an incubation 

at 50° C for 10 minutes until the gel slice was completely dissolved (vortexing the tube 

every 2-3 minutes). 1 volume of Isopropanol (BDH) was added to the mixture and 

vortexed properly. The mixture was then loaded into the QIAquick spin column (DNA 

was bound to the membrane of the column) that was attached to a vacuum manifold. The 

column was washed two times with 750 μL of Buffer PE in the vacuum manifold. Then 

the column was placed in the provided 2 mL collection tube and centrifuged for 1 minute 

at 14,500 rpm in order to remove residual wash buffer. The QIAquick spin column was 

then placed into a sterile 1.5 mL Eppendorf tube and DNA was eluted with the addition 

of 50 μL Buffer EB to the center of the QIAquick membrane, letting the column stand for 

2 minutes and centrifuging for 2 minutes at 14,500 rpm. Purified PCR products were 

stored at -20° C.  

2.3.6 Vector and insert preparation  

The mammalian expression vectors (pCi-neo and pEGFP-C1) and the purified 

Q5® Hot Start High-Fidelity DNA Polymerase products (i.e. Ciona Agrin and Ciona 

Nova) were digested with the appropriate restriction enzymes (New England BioLabs) 

according to the manufacturer. Both vector and PCR product digestion mixtures were 

prepared with: 10X CutSmart Buffer (10 μL), the enzyme pair used for cloning (3 μL 

each) in a final volume of 100 L. 2 μg of vector and the whole purified PCR product 

were digested in a total reaction volume of 100 μL (diluted in sterile ddH2O) in separate 

tubes. The mixtures were incubated O/N at 37° C. 1 μL of each enzyme was added and 
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the mixtures were incubated another hour at 37° C. This was followed by a phenol 

chloroform extraction.  

2.3.7 Vector dephosphorylation  

In order to prevent self-ligation, the 5' phosphate groups   rewe removed from the 

digested vector prior to ligation. A mixture of the whole amount of digested plasmid (20 

μL); CutSmart buffer (3 μL); Shrimp Alkaline Phosphatase (rSAP) (New England 

BioLabs) (1.5 μL); 5.5 μL sterile H2O was prepared in an Eppendorf tube. The mix was 

then incubated for 30 minutes at 37° C, followed by an incubation for 5 minutes at 65° C 

to inactivate the enzyme according to the manufacturer. This was followed by a phenol 

chloroform extraction.  

2.3.8 Phenol Chloroform extraction and DNA/RNA precipitation  

The Phenol Chloroform extraction was performed by adding 180 μL 

Phenol:Chlorophorm (AMRESCO) to the DNA or RNA + enzymes mixture and H2O to 

360 μl. The resulting mix was vortexed and spun for 5 minutes at 12,000g. The 

supernatant was transferred to a new Eppendorf tube. This was followed by addition of 3 

M Sodium Acetate (AMRESCO) pH 5.2, (20 μl); GlycoBlue 15 mg/ml (Ambion) (2 μL) 

and 2.5 volumes of 100% Ethanol (Fisher Schientific) (500 μL). The mixture was 

vortexed and incubated for 30 minutes at - 80° C. It was then spun for 30 minutes at 4° C 

at 1,200g. The supernatant was removed, and the pellet was washed with 70% Ethanol 

(500 μL). This was followed by a 10-minute centrifugation at 4° C and 12,000g. The 

supernatant was removed, and the pellet was dried at 37° C. H2O was added according to 

expected concentration, and the nucleic acid concentration was measure using a 



29 
 

BioSpectrometer spectrophotometer (Eppendorf). Resulting pure DNA was stored at -20° 

C. Resulting pure RNA was stored at -80° C. 

2.3.9 Ligation of insert and plasmid  

Ciona Agrin inserts (and other minigenes) were cloned into the pCI-neo 

mammalian expression vector (Promega) (5472 bp) and Ciona Nova (and other splicing 

factors) inserts were cloned into pEGFP-C1 vector (Clontech) (4731 bp). The insert 

integration was performed using T4 DNA Ligase (New England BioLabs) and an insert-

to-vector ratio of 3:1. A mix of 50 ng of vector (1 μL); 2 μL 10X Ligation Reaction 

Buffer; 1 μL T4 DNA Ligase was prepared in an Eppendorf tube. It was centrifuged 

briefly and incubated O/N at 16° C. The mix was then used to transform Escherichia coli 

DH5α competent cells.  

2.3.10 Transformation of E. coli DH5α cells  

Ligation products were transformed into competent E. coli DH5α cells (New 

England BioLabs). The competent cells were thawed on ice. About 4 μL of the ligation 

mixture was added to 50 μL of competent cells and mixed by flicking the tube 2-3 times. 

The mix was then placed on ice for 30 minutes. This was followed by a heat shock at 42° 

C for 30 seconds. After this, 950 μL of room temperature SOC media was added, and the 

cells were shaken at 250 rpm for 60 minutes at 37° C. The cells were then spread on LB 

agar (AMRESCO) plates under antibiotic selection and incubated overnight at 37° C.    

2.3.11 Miniprep  

Colonies from transformation plates were picked with a toothpick and grown 

overnight at 37° C while shaking at 250 rpm in 5 mL LB medium (AMRESCO) 
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supplemented with the appropriate antibiotic (AMRESCO). Before the miniprep 

procedure, each cell culture was streaked on LB agar plates (AMRESCO) containing the 

appropriate antibiotic; plates were incubated overnight at 37° C, and then stored at 4° C. 

The bacterial culture was harvested by centrifugation at 8,000 rpm in a standard bench 

top microcentrifuge for 2 minutes at room temperature. The supernatant was removed. 

All purification steps were carried out in a table-top microcentrifuge at 12,000g with a 

GeneJET Plasmid Miniprep Kit (Thermo Scientific). The pellet was completely 

resuspended in 250 μL Resuspension Solution and transferred to a microcentrifuge tube. 

250 μL Lysis Solution was then added and the tube was inverted 4-6 times until the 

solution became viscous and slightly clear. 350 μL Neutralization Solution was added 

and the tube was immediately inverted 4-6 times. The mix was centrifuged for 5 minutes 

to pellet cell debris and chromosomal DNA. The supernatant was transferred to a 

GeneJET spin column placed on a vacuum manifold and vacuum was applied to bind 

plasmid DNA to the column membrane. The column was washed with 500 μL of Wash 

Solution twice. Then the column was placed in the provided 2 mL collection tube and 

centrifuged for 1 minute in order to remove residual Wash Solution. The GeneJET spin 

column was then placed into a clean 1.5 mL Eppendorf tube and DNA was eluted with 

the addition of 50 μl Elution Buffer to the center of the membrane, incubating for 2 

minutes at room temperature and centrifuging for 2 minutes. Purified plasmid DNA was 

stored at -20° C.  

2.3.12 Test cut  

The isolated constructs from the miniprep were digested with the restriction 

enzymes (New England BioLabs) used for cloning according to manufacturer. The 
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digestion mixture was prepared with: 10X CutSmart Buffer (1 μL); the enzyme pair used 

for cloning (0.5 μL each). 200 ng of construct in a total volume of the reaction of 10 μL 

(diluted in sterile ddH2O). The mixtures were incubated 30 minutes at 37° C. A following 

incubation for 5 minutes at 65° C was done in order to inactivate the enzymes.   

2.3.13 Gel electrophoresis  

The digested constructs were then run on an agarose gel. The gels were made with 

variable percentages of Agarose (AMRESCO) in TBE or TAE buffers. 10X TBE was 

prepared by mixing Tris Base (AMRESCO) (60.55 g); Boric Acid (AMRESCO) (30.9 g); 

0.5M EDTA pH 8.0 (AMRESCO) (20 mL) and bringing the volume to 1L with ddH2O. 

50X TAE was prepared by mixing Tris Base (AMRESCO) (242 g); Glacial Acetic Acid 

(AMRESCO) (57.1 mL); 0.5M EDTA pH 8.0 (AMRESCO) (100 mL) and bringing the 

volume to 1L with ddH2O. The buffers were autoclave sterilized. TBE gels were used for 

gel extraction. For the visualization of DNA, we used 3x GelRed (Biotium) (33 mL in a 

100 mL gel), with exception of the gels used for running digested vectors which we 

stained with Ethidium Bromide, 10 mg/ml (AMRESCO) (5 μL in a 100 mL gel).  

2.3.14 Sequencing  

The plasmids containing the inserts of expected length were Sanger sequenced 

and the clones with correct insert were used for maxiprep for future cell line transfection. 

All the constructs were confirmed by the sequencing. The sequencing was performed by 

Genewiz.  
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2.3.15 Maxiprep  

The appropriate bacterial cells were picked from the streak plate prepared before 

the miniprep procedure. They were grown in 1 mL of LB broth supplemented with the 

proper antibiotic for 4 hours and then transferred to a flask containing 200 mL of LB 

broth for overnight growth at 37° C while shaking at 250 rpm. 50 % Glycerol stocks were 

prepared from the bacterial culture and stored at -80° C (937 μL of sterile 80 % Glycerol 

+ 563 μL bacterial culture). The bacterial culture was harvested by centrifugation at 

5,000g for 10 minutes at room temperature. The supernatant was removed. All 

purification steps were carried out with a maxiprep kit (GeneJET Plasmid maxiprep kit 

from Thermo Scientific and Macherey Nagel maxiprep kit from Macherey Nagel) at 

room temperature. The bacterial cell pellet was resuspended in 6 mL Resuspension 

Solution. 6 mL Lysis Solution was added and mixed gently by inverting the tube 4-6 

times until the solution became viscous and slightly clear. This was followed by 

incubation for 3 minutes. 6 mL Neutralization Solution was then added and mixed 

immediately by inverting the tube 5-8 times. This was followed by addition of 0.8 mL 

Endotoxin Binding Reagent and mixing by inverting the tube 5-8 times, followed by 

incubation for 5 minutes. 6 mL of 96% ethanol was then added and mixed by inverting 

the tube 5-8 times. This was followed by centrifugation at 5,000g for 40 minutes to pellet 

cell debris and chromosomal DNA. The supernatant was transferred to a 50 mL tube. 6 

mL of 96% ethanol was added and mixed by inverting the tube 5-8 times. The sample 

was transferred to the column placed on a vacuum manifold and vacuum was applied to 

bind plasmid DNA to the column membrane. The column was washed with 8 mL Wash 

Solution I and then twice with 8 mL Wash Solution II. The column was then placed in the 

collection tube and centrifuged for 5 minutes at 3,000g in a swinging bucket rotor to 



33 
 

remove residual Wash Solution. The column was transferred to a fresh collection tube. 1 

mL Elution Buffer was added to the center of the purification column membrane. This 

was followed by incubation for 2 minutes and centrifugation for 5 minutes at 3,000g to 

elute plasmid DNA. The purified plasmid DNA was stored at -20° C.  

2.3.16 Transfection procedure for splicing assay 

The day before the transfection 0.6 x 106 HEK293T cells were seeded per well in 

a 6-well plate (USA Scientific) in DMEM culture medium. On the day of transfection, a 

total of 2.5 g DNA of minigene, cDNA construct, and empty vector was used to 

transfect each of 6 well plate(s) and 7.5 L of linear polyethylenimine (PEI; 

Polysciences), MW 25,000 (1mg/mL) was used in a ratio of 1:3 (DNA : PEI). 0.5 g (= 

1x) of minigene DNA was used in each well to test splicing with different amount of 

splicing factor (0g = 0x, 0.5g = 1x, and 2.0g = 4x). Empty vector was used to bring 

the total amount of DNA to 2.5 g (2.0g = 4x, 1.5g = 3x, and 0g = 0x) per well. The 

total volume of the DNA mixture was 200 L (Table 6 and 7). First, the exact amount of 

DNA in L was pipetted in 1.5 L Eppendorf tube (Eppendorf) and Opti-MEM media 

(Thermo Scientific) was used to bring the volume to 192.5 L. Then the mixture was 

vortexed thoroughly. Finally, 7.5 L of PEI was added, vortexed, and centrifuged briefly. 

The mixture was then incubated for 15 minutes at room temperature. In the meantime, 

medium in the cells was aspirated and 2 mL of fresh DMEM medium was added. After a 

15 minutes incubation, 200 L of reaction mixture was added to the cell and the plate 

was cross-shaked gently. The plate was then incubated for 48 hours at 37 ° C.   
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2.3.17 RNA extraction  

RNA from transfected HEK293T cells was extracted 48 hours after transfection 

using RiboZol RNA Extraction Reagent (AMRESCO) or IBI Isolate (IBI Scientific) 

according to the manufacturer. HEK293T cells were homogenized using pipette tip in 

500 L RiboZol and transferred into a 1.5 mL Eppendorf tube and incubated for 10 

minutes at room temperature to ensure complete dissociation of the nucleoprotein 

complexes. This was followed by addition of 100 µL chloroform and shaking the tube 

vigorously for 15 seconds. The sample was then incubated for 3 minutes at room 

temperature. This was followed by centrifugation at 12,000x rpm for 15 minutes at 4° C. 

After centrifugation 3 phases were visible: a) lower red, phenol-chloroform phase; b) 

white interphase; c) colorless, upper, aqueous phase. RNA locates exclusively in the 

upper phase and about 80% of this phase were transferred to a new tube without touching 

the interphase. RNA was then precipitated by adding 250 L of Isopropanol (BDH) and 2 

L of RNA grade glycogen (Thermo Scientific). The samples were incubated for 10 

minutes at room temperature and then centrifuged at 12,000x rpm for 10 minutes at 4° C. 

After centrifugation a white pellet of RNA was visible at the bottom of the tubes. The 

supernatant was removed without disturbing the pellet. The pellet was then washed with 

500 L of 70% ethanol prepared with RNase-free water – vortexed and centrifuged at 

14,000x rpm for 5 minutes at 4° C. After this the pellet was air-dried for 5 minutes and 

re-dissolved in RNase-free water (Thermo Scientific) by passing it several times through 

a pipette tip and incubating for 10 minutes at 50° C to completely dissolve. After reading 

the concentration of RNA with a spectrophotometer the samples were stored at -80° C.  
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2.3.18 DNase I treatment  

A total of 5 g of RNA were digested with DNase I in order to remove any 

genomic DNA contamination from RNA samples in a 50 L reaction containing 1.5 L 

of TurboDNase (Thermo Scientific), 5 L of 10X Buffer, and ddH2O to 50 L. After 30 

minutes of incubation at 37 °C another 1.5 L of TurboDNase was added to the mixture 

and incubated for another 30 minutes. After a total of one-hour incubation 10 L of 

TurboDNAse Inactivation Reagent was added and samples were kept at room 

temperature for 5 minutes, and the tubes were flicked every 2 minutes to resuspend the 

inactivation reagent. Then the tubes were centrifuged at 10,000 rpm for 90 seconds. An 

adequate amount of supernatant was collected for further processing.   

2.3.19 Reverse transcription  

From total RNA we synthesized cDNA using RevertAid First Strand cDNA 

Synthesis Kit (Thermo Scientific). A mix of 250 ng RNA and 1 µL of oligo (dT)18 500 

ng/µL was prepared in a total volume of 12 µL (diluted in sterile ddH2O). The mix was 

incubated for 5 minutes at 65 °C in a PCR machine. After this, an RT reaction mix was 

prepared combining the mixture above with the following ingredients in a total volume of 

20 µL: 5X RT Buffer (4 µL); RiboLock RNase Inhibitor 20 U/µl (0.5 µL); 10 mM 

dNTPs (2 µL); RevertAid RT 200 U/µl (0.5 µl). This mixture was incubated for 1 hour at 

42 °C followed by 5 minutes at 72 °C in a PCR machine. After the incubation, 5 µL of 

H2O were added to each tube bringing the volume to a total of 25 µL. Each RT reaction 

mix had a concentration of 10 ng of starting RNA/µL. 5 µL from each RT reaction, 

equivalent to 50 ng of starting RNA, were used as template for each RT-PCR.  
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2.3.20 RT-PCR   

A mixture of 10X PCR Buffer (5 µL); dNTPs 10 mM (1 µL); forward and reverse 

primers each 10 M (1 µL); 5 U/µL HotStarTaq Plus DNA polymerase (Qiagen) (0.4 µL) 

or 5 U/µL Dream Taq Hot Start DNA polymerase (Thermo Scientific) (0.4 µL) and RT 

reaction (5 µL) in a total volume of 50 µL (diluted in sterile ddH2O) was prepared in a 

PCR tube. The PCR reaction was performed with initial denaturation for 5 minutes at 95 

°C; variable number of cycles of: denaturation for 30 seconds at 94° C, annealing for 30 

seconds at 60°C and elongation for 30 seconds at 72 °C. This was followed by a final 

extension of 7 minutes at 72 °C and a hold at 12 °C.  

2.3.21 Western Blotting  

The cDNA constructs all the pEGFP-Nova (WT and mutants) were co-transfected 

with Agrin minigenes into HEK293 cells. After 48 hours cells were collected and 

resuspended in lysis buffer: 0.5% deoxycholic acid sodium salt (Fisher), 0.1% SDS 

(AMRESCO), 0.5% NP-40 (Calbiochem), 1x PBS and 50% glycerol (AMRESCO)) with 

protease inhibitor cocktail (AMRESCO). The lysate was left on ice for 20’. After 

sonication at 50% amplitude (Fisher Scientific Sonic Dismembrator Ultrasonic Processor 

FB120, 120 W 20 kHz), the lysate was subjected to centrifugation at 14,000 rpm at 4° C 

for 15 minutes and the supernatant collected in a fresh tube. Total protein amounts were 

calculated using a standard Bradford assay and 10 g of protein extract from each sample 

were loaded on a 8% SDS-polyacrylamide gel. Proteins were then transferred from gel 

onto PVDF membrane (Millipore, Immobilon-FL) and blocked in Odyssey blocking 

buffer (TBS, Li-cor). Membranes were blotted with mouse monoclonal anti-GFP 

antibody (Santa Cruz biotech, sc-9996, 1:1000 dilution) and then donkey anti-mouse 
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IRDye 800CW secondary antibody (Li-cor, 926-32212, 1:5000 dilution). The signal was 

detected using the Odyssey CLx imaging system (Li-cor). 
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2.4 RESULTS  

2.4.1 Agrin’s Z exons and Nova are conserved in Ciona robusta  

To dissect the regulatory mechanism of Agrin splicing by Nova, we cloned full-

length Agrin and Nova cDNAs from hatched larvae at 22.5 hours post fertilization (hpf) 

at 20° C and brain from adult Ciona robusta (Fig. 1A, B). Ciona Agrin (CiAgrin) and 

Ciona Nova (CiNova) cDNAs are ~8 kb and ~2 kb long, respectively. The Z exons at Z 

site of CiAgrin are 18 and 15 bases long and code for 6 and 5 amino acids, respectively. 

Therefore, we termed the Z exons from Ciona Agrin Z6 and Z5, respectively. By direct 

cloning and sequencing of RT-PCR product, we detected all the different isoforms of Z+ 

Agrin from larvae at 22.5 hpf and from adult brain (Fig. 1C). Interestingly, robust 

expression of Z5 and Z6 splice isoforms was detected in brain tissues while Z11 appears 

to be the predominant form in larvae. To investigate the molecular mechanism regulating 

AS of the Z exons of CiAgrin, we generated a minigene construct spanning the genomic 

region of Ciona Agrin encompassing the Z exons and flanking introns and including the 

upstream and downstream constitutive exons (exon 40 and 41; Fig. 2A). This genomic 

region was amplified by PCR and cloned into the mammalian expression vector pCi-neo. 

We cloned 3 isoforms of CiNova form Ciona and we named them CiNova_MMM, 

CiNova_MLN, and CiNova_MEY respectively based on the first 3 AA at the N-terminus 

(Fig. 1D). These 3 isoforms are the product of AS where two different first exons can be 

used: Inclusion of a distal first exon, termed exon 1a, gives rise to CiNova_MMM, while 

inclusion of a proximal first exon, termed exon 1b, gives rise to CiNova_MLN and 

CiNova_MEY. Of these 3 isoforms, only CiNova_MMM has a nuclear localization 

signal (NLS) present in first exon 1a. CiNova_MLN and CiNova_MEY, on the other 

hand, include an alternative first exon 1b that does not include an NLS. Therefore, in 
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Ciona, Nova undergoes AS at the first exon to generate two isoforms: one that contains 

an NLS, and a second one that does not. Compared to CiNova_MLN, CiNova_MEY uses 

a downstream first codon and therefore lacks the first 4 AA at its N-terminus. The 3 full-

length Ciona Nova cDNAs were cloned into the pEGFP-C1 mammalian expression 

vector in order to generate Nova constructs tagged with EGFP in-frame at their N-

termini.   

2.4.2 Nova promotes inclusion of Agrin’s Z exons in a dose-dependent manner and 
Z exons splicing is species specific  

To investigate the mechanism regulating AS of the Z exons of CiAgrin, we 

generated a minigene construct (Fig. 2A) spanning the genomic region of Ciona Agrin 

encompassing the Z exons and flanking introns and including the upstream and 

downstream constitutive exons (exon 40 and 41). This genomic region was amplified by 

PCR and cloned into the mammalian expression vector pCi-neo. To perform in vitro 

minigene splicing assays, we co-transfected constant amounts of our Ciona Agrin 

minigene construct with increasing amounts of EGFP-CiNova in HEK293T cells. Total 

RNA was extracted, quantified, normalized and subjected to AS analysis by semi-

quantitative RT-PCR. Using this splicing assay, we discovered that all 3 CiNova 

constructs promote inclusion of CiAgrin’s Z exons in a dose-dependent manner. This 

means that all Ciona isoforms of Nova are able to splice independently of their N-

terminus; that is, independently of whether the N-terminus includes the canonical NLS or 

not. In details, in this in vitro splicing assay we were able to detect two Z isoforms of Z+ 

Agrin: Z5 and Z11 (Z6+Z5), but not Z6 (Fig. 2D). To confirm the expression of the 

CiNova proteins tagged with EGFP at the N-terminus, we co-transfected all 3 EGFP-

CiNova constructs with our CiAgrin minigene in HEK293T cells and analyzed EGFP-
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Nova protein expression by western blotting. All Nova proteins were robustly expressed 

in a dose-dependent manner (Fig. 2E). For simplicity, all further splicing assays of 

CiAgrin (WT and mutants) were performed using CiNova_MLN.  

In mammals, there are two different NOVA genes which encode for two highly 

homologous proteins, NOVA1 and NOVA2. Ruggiu et al. (2009) reported that mouse 

Nova (mNova1 and mNova2) regulates AS of mouse Agrin and mNova dKO mice 

significantly abolish inclusion of Z exons and the dKO mice die immediately after birth. 

We generated two cDNA constructs of mouse Nova into the pEGFP-C1 mammalian 

expression vector to further investigate the splicing of Z exons of mouse Agrin in our in 

vitro splicing assay system. We used a mouse Agrin minigene spanning the genomic 

region of Agrin encompassing the Z exons (32 and 33) and flanking introns and including 

the upstream and downstream constitutive exons (exon 31 and 34) used in previous 

studies (Fig. 2B). Co-transfection was carried out in HEK293T cells with constant 

amounts of mouse Agrin minigene and increasing amounts of EGFP-mNova1 or mNova2 

and we found that both mNova1 and mNova2 promote inclusion of Z exons in a dose-

dependent manner. In our minigene splicing assay we were able to detect only the Z8 

isoform of Z+ Agrin (Fig. 2F).  

RBFOX1 (also known as A2BP1 or FOX1) is a neuron-specific RNA-binding 

protein that exerts both positive and negative regulatory effects on AS (Underwood et al., 

2005). RBFOX1 has been implicated in numerous neurodevelopmental and 

neuropsychiatric disorders including autism spectrum disorder, mental retardation and 

epilepsy (Ballah et al., 2004; Martin et al., 2007; Sebta et al., 2007; Wang et al., 2009; 

Voineagu et al., 2011; Wintle et al. 2011), attention deficit hyperactivity disorder (Elia et 
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al., 2010), bipolar disorder, schizoaffective disorder and schizophrenia (Xu et al., 2008; 

Le‐Niculescu et al., 2009; Hamshere et al., 2009). Two other important alternative 

splicing regulators in brain development Ptbp2 (Licatalosi et al., 2012) and Mbln2 

(Charizanis et al., 2012) were also used to investigate any potential alternative splicing 

regulation of mouse Agrin and Snap25 minigenes. To explore if mouse Rbfox1 regulates 

AS of the Z exons of mouse Agrin, we co-transfected Rbfox1 with the mouse Agrin 

minigene in HEK293T cells and discovered that Rbfox1 regulates the splicing of Agrin 

by promoting inclusion of the Z exons in a dose-dependent manner as well (Fig. 2G). To 

our knowledge there is no known cis-acting element for Rbfox1 in mouse Agrin and its 

splicing regulation has never been reported by Rbfox1. Moreover, we have not observed 

any splicing regulation when mouse Agrin minigene was tested against splicing factors 

Ptbp2 and Mbnl2 (data not shown), suggesting that the regulation of Agrin’s AS by 

Rbfox is specific. Leggere et al., 2016 reported that Nova regulates the AS of Dcc pre-

mRNA. We carried out splicing assays in HEK293T cells by co-transfecting mouse Nova 

with a Dcc minigene containing the genomic DNA between exons 16 and 17 and verified 

that we could replicate the results by Leggere et al., 2016 (Fig. 2H, I). 

2.4.3 Expression of Agrin’s Z isoforms is developmentally regulated  

We collected tissue samples from different developmental stages of Ciona, 

extracted total RNA, and investigated the expression of Agrin and Nova by semi-

quantitative RT-PCR. In this analysis we also included unfertilized eggs, and adult brain 

and heart tissue.  We found that, while total Agrin and Nova are robustly expressed 

throughout development (Fig. 3, first panel and third panel), Agrin’s Z exons start to be 

included at 10 hpf (Fig. 3, first panel). Interestingly, our RT-PCR data indicate that Z11 
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is the most abundant Z+ Agrin isoform, peaking in hatched larvae at 22.5 hpf during 

development, while the smaller Z5 isoform appears to be the predominant one in adult 

brain (Fig. 3, first panel). We also observed weak expression of Nova and Z+ Agrin in 

heart muscle of Ciona. Interestingly, total Agrin is also robustly expressed in unfertilized 

eggs, suggesting that Agrin is maternally inherited in Ciona, and it may play an important 

role during early stages of larval development. The expression of Actin was monitored as 

experimental (housekeeping) control (Fig. 3, last panel).  

2.4.4 Nova requires its first two KH domains to splice Agrin’s Z exons while KH3 is 
dispensable  

KH (hnRNP K-homology, ~70 AA long) domains are evolutionarily conserved 

RNA-binding domains that are present in both eukaryotes and prokaryotes (Musco et al., 

1996; Siomi et al., 1993; Grishin et al., 2001) and are found in a wide range of nucleic 

acid binding proteins, including Nova that harbors 3 KH domains and is exclusively 

expressed in the central nervous system and in certain tumors (Zhang et al., 2016; 

Buckanovich et al., 1993; Darnell et al., 2003). KH domain-harboring proteins play key 

roles in many cellular processes, such as translation, AS of pre-mRNA, and mRNA 

localization (Buckanovich et al., 1993; Darnell et al., 2003; Siomi et al., 1993) and loss 

of function of KH domains is associated with several diseases, including paraneoplastic 

syndromes and some cancers (Valverde et al., 2008). Previous work showed that a 

missense mutation in the KH domain of FMRP1, the fragile X mental retardation gene, 

impairs RNA binding and causes severe mental retardation in humans (Siomi et al., 

1994). KH domains have a conserved GXXG motif and a variable loop (Buckanovich et 

al., 1997; Jensen et al., 2000; Hollingworth et al., 2012) and it has been shown that 
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mutating the conserved GXXG motif to GDDG abolishes RNA-protein interactions while 

keeping the protein structure intact (Hollingworth et al., 2012).   

To determine which KH domain or domains of CiNova is/are required for splicing 

of Z exons, we generated KH GDDG mutants in all possible combinations including 

single (KH1, KH2, KH3), double (KH1/KH2, KH2/KH3, KH1/KH3), and triple 

(KH1/KH2/KH3). To this end, we co-transfected HEK293T cells with a constant amount 

(1x) of CiAgrin minigene with varying amounts (0x, 1x, 4x) of WT and all the GDDG 

mutants of CiNova. Total RNA was extracted, quantified, and subjected to RT-PCR 

analysis to determine the inclusion of Agrin’s Z exons by WT and GDDG CiNova 

mutants. We observed that WT CiNova promotes inclusion of Z exons in a dose-

dependent manner, while CiNova KH1 and KH2 GDDG mutations abolish splicing (Fig. 

4B). However, mutation of the third KH domain has no negative effect on splicing. RT-

PCR analysis of co-transfection experiments including KH GDDG double and triple 

mutants further suggests that CiNova requires both KH1 and KH2 domains for promoting 

Z exons inclusion, while KH3 is dispensable (Fig. 4B). Since CiNova_MMM and 

CiNova_MLN have different N-terminal, we therefore generated all the combinations of 

KH GDDG mutants for CiNova_MMM and co-transfected them with our CiAgrin 

minigene in HEK293T cells. Despite their different N-termini, in our splicing assays we 

were unable to detect any differences in splicing activity between CiNova_MLN and 

CiNova_MMM GDDG mutants (Fig. 6A, B). To investigate KH domain requirement by 

mouse Nova, we also generated all the combinations of KH GDDG mutants of both 

mouse Nova1 and Nova2 and co-transfected them with our mouse Agrin minigene in 

HEK293T cells. We found that only KH3 GDDG mutant of Nova2 abolishes splicing of 
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Z exons of mouse Agrin (Fig. 7C), while none of the individual KH mutant of Nova1 

abolishes splicing (Fig. 7A). However, double and triple KH GDDG mutants of both 

Nova1 and Nova2 completely abolish splicing of Z exons of mouse Agrin (Fig. 7B, D).  

2.4.5 Novel function of N/C-terminals and KH3 domain of Nova  

To investigate possible novel function of N and C-terminals and KH3 domain, we 

generated 7 deletion mutants of CiNova by deleting N and C-terminals, KH3 domain and 

various combinations of them. We discovered that deleting either N- or C-terminals or 

both of them together completely abolishes splicing of Z exons of CiAgrin even though 

both KH1 and KH2 domains are intact (Fig. 5A,6C). Consistent with our data indicating 

that KH3 is dispensable for splicing, KH3 deletion mutant has no effect on splicing, as 

expected. Interestingly, splicing of Z exons was rescued when deletion of either N- and 

C-terminus or both together was coupled with the deletion of KH3 domain, a finding that 

suggests a complex regulatory mechanism of splicing between different intramolecular 

CiNova domains (Fig. 5B, 6D).   

2.4.6 A bipartite intronic splicing enhancer mediates Nova-dependent inclusion of 
Agrin’s Z exons  

Nova targets are enriched in YCAY clusters as Nova specifically recognizes 

YCAY sequences on pre-mRNA (Jensen et al., 2000; Ule et al., 2003; Ule et al., 2005; 

Ule et al., 2006). YCAY-rich sequences on Nova targets can be exonic or intronic and are 

conserved between mouse and human (Ule et al., 2006). The position of the YCAY 

cluster and Nova’s binding to specific cluster(s) determines splicing outcome (Ule et al., 

2006). Previous work has shown that Nova promotes inclusion of alternative exons when 

it binds to intronic YCAY clusters downstream of alternative exons, but binding to a 
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cluster located on the alternative exon or upstream of it, on the other hand, doesn’t 

promote inclusion but skipping (Ule et al., 2006). Mutating the targets of Nova from 

YCAY to YAAY has been shown to abolish both Nova binding (Buckanovich et al., 

1997) and splicing (Leggre et al., 2016). In CiAgrin intronic YCAY sequences are 

exclusively concentrated in the intron downstream of exon Z5 (18 YCAY sequences in 

intron 40) and only 5 YCAY sequences are present on flanking constitutive exons: one in 

exon 40 and 4 in exon 41 (Fig. 8A).   

To dissect the cis-regulatory YCAY elements of CiAgrin that may mediate Nova-

dependent inclusion of the Z exons, we generated 32 mutant minigenes of CiAgrin by 

mutating its 23 YCAY sequences to YAAY in different combinations (Fig. 8E). To this 

end, co-transfection of constant amounts (1x) of CiAgrin minigene (WT and YAAY 

mutants) with varying amounts (0x, 1x, 4x) of CiNova in HEK293T cells was performed. 

Total RNA was extracted, quantified, and subjected to semi-quantitative RT-PCR 

analysis to monitor the inclusion of Agrin’s Z exons by CiNova. Our results suggest that 

we have identified two Nova-dependent intronic splicing enhancers (NISE) elements, 

termed NISE1 and NISE2, in intron 40 (Fig. 8E). NISE1 contains the first 6 YCAY 

sequences while NISE2 covers YCAY11 to YCAY14 (Fig. 8A, E). Exonic YCAY 

sequences, on the other hand, are not required for splicing at the Z site of CiAgrin (Fig. 

8B). We noticed that in CiAgrin the average nt distance between the intronic YCAY 

repeats is 32. Interestingly, the average nt distance in the NISE elements is reduced to 10 

nt and 22 nt in NISE1 and NISE2, respectively. However, our findings suggest that the 

spacing between single YCAY sequences does not appear to be critical for splicing (Fig. 

8F). For example, YCAY 6 and 7, the closest YCAYs, are only 2 nt apart and double 
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mutant YAAY 6-7 cannot abolish splicing. Conversely, YCAY 12 and 13 are also 2 nt 

apart but double mutant YAAY 12-13 is unable to splice. At the other end of the 

spectrum, YCAY 13 and 14 are 56 nt apart, and double mutant YAAY 13-14 is unable to 

splice, while ICAY 17 and 18 are 111 nt apart but double mutant YAAY 17-18 is still 

able to splice.  

2.4.7 Agrin’s Z exons splicing is species specific 

To determine species specificity of Agrin’s Z exons splicing, we co-transfected 

CiAgrin minigene with individual cDNA constructs of Nova from either mouse or Ciona 

in HEK293T cells. Total RNA was extracted and subjected to semi-quantitative RT-PCR 

analysis. The contemporary experiment was also performed where HEK293T cells were 

co-transfected with mouse Agrin minigene and Nova from either mouse or Ciona and 

subjected to semi-quantitative RT-PCR analysis after total RNA extraction. We observed 

that the Z exons of Agrin are spliced only by its species-specific Nova: Nova from mouse 

cannot splice CiAgrin minigene and mouse Agrin minigene is not spliced by mouse Nova 

(Fig. 9A, B).  

2.4.8 Exons 5a and 5b of Snap25 are regulated by mouse Nova1/2, Rbfox1, and 
Ptbp2 but not Mbnl2 

SNAP25 plays a crucial role in neuroexocytosis by linking synaptic vesicles to the 

plasma membrane during regulated neurotransmitter release. Exon 5 of SNAP25 is a 

perfect example of exon duplication, a process of proteomic diversification. Exons 5a and 

5b are subjected to mutually exclusive AS that results in two splice variants, SNAP25a 

and SNAP25b (Letunic et al., 2002). Several mutations affecting SNAP25b isoform have 

been reported in patients with neurological illnesses including myasthenia, intellectual 
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disability, and cerebral ataxia (Engel et al., 2018; Shen et al., 2014; Fukuda et al., 2018). 

Snap25 knockout mice revealed that the Snap25b isoform shows a higher capability in 

stabilizing primed vesicles than Snap25a (Sørensen et al., 2003). Transgenic mouse 

models have revealed that the splicing ratio of exons 5a and 5b of Snap25 is 

developmentally regulated and decreased expression of 5b resulted in developmental 

defects, spontaneous seizures, and impaired short-term synaptic plasticity (Johansson et 

al., 2008). From iCLIP study Gehman et al., 2011 reported that Rbfox1 has many 

(U)GCAUG motifs adjacent to exon 5b suggesting a possible splicing regulation of this 

exon by Rbfox1. 

To specifically explore the splicing of exon 5a and 5b, a minigene pSP-Snap25-

5a/b containing 2625 nt of genomic region encompassing exon 5a and 5b from the 

Snap25 gene (Fig. 11A)  was generated and tested in minigene splicing assays with 

various splicing factors including Nova1, Nova2, Rbfox1, Ptbp2, and Mbnl2. All 5 of 

these splicing factors were cloned in pCAGGS-3x-Flag vector. Since exon 5a and 5b are 

identical in size (118 nt), it is not possible to distinguish them by gel electrophoresis after 

semi-quantitative RT-PCR. Interestingly, all constructs promote inclusion of either 5a or 

5b or maybe both (Fig. 11B). To determine which exon is spliced in in the RNA 

transcript, we digested the RT-PCR products with restriction enzymes that are specific 

for each alternative exon: an NdeI restriction site present in exon 5a, and an AvrII 

restriction site present in exon 5b. Digestion of the RT-PCR products with NdeI generates 

two fragments of 194 and 186 bp if isoform 5a is present, while digestion of the RT-PCR 

products with AvrII generates two fragments of 211 and 171 bp if isoform 5b is present. 

By observing the size of bands on a gel, we confirmed which exon was regulated by 
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which splicing factor. Running the digested RT-PCR transcripts on gel, we discovered 

that Nova2 and Rbfox1 strongly promote inclusion of exon 5b (Fig. 11D, E), while 

Nova1 weakly regulates inclusion of both exons (Fig. 11C). Our observation for Ptbp2 

and Mbln2 is slightly different: Ptbp2 promotes only the inclusion of exon 5a (Fig. 11F), 

while Mbln2 regulates inclusion of both exons with a preference for the inclusion of exon 

5a over 5b (Fig. 11G).  

Moreover, to assess the co-regulatory control of splicing at the 5a/b site, we 

performed competition experiments where we co-transfected mSnap25 minigene with 2 

different splicing factors in HEK293T cells. For example, a varying amount of mRbfox1 

(0x, 1x, 3x) was used with a constant amount of mPtbp2 (1x), and vice versa, while the 

amount of minigene was always constant (1x). We digested the RT-PCR products with 

NdeI and AvrII and overserved splicing regulation on agarose gel. We observed that there 

is an antagonistic effect between mRbfox1 and mPtbp2. However, mRbfox1 has strong 

preference in recognizing and promoting the inclusion of 5b in the presence of mPtbp2. 

We detected dose-dependent inclusion of 5b and skipping of 5a when co-transfection was 

carried out with varying amounts of mRbfox1 and constant amount of mPtbp2 (Fig. 

12A). On the other hand, co-transfection with varying amounts of mPtbp2 and constant 

amount of mRbfox1 resulted in an opposite scenario. In this case, we observed a dose-

dependent inclusion of 5a and skipping of 5b; interestingly, expression of 5b is much 

stronger than 5a (Fig. 12B). We have not observed any effect when mNova1 was co-

transfected with varying amounts of mRbfox1 (Fig. 12D). However, we found a dose-

dependent skipping of 5b when co-transfection with constant mRbfox1 and varying 

amount of mNova1 was carried out (Fig. 12C). We have not observed any antagonistic 



49 
 

relationship between Nova2 and mRbfox1 but a cooperation. In both co-transfection 

experiments with constant amounts of mRbfox1 and varying amounts of mNova2, or 

constant amounts of mNova2 and varying amount of mRbfox1, we observed strong 

inclusion of 5b (Fig. 12E, F). 
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2.5 DISCUSSION  

In vertebrates Z+ Agrin-mediated clustering of AChRs at the NMJ is critical for 

synaptogenesis and muscle stability (Bezakova et al., 2003). However, in invertebrates 

(the nematode C. elegans) the expression of Agrin is very weak and transient in 

motoneurons in the embryo but not detected in larvae nor in adult stages and its protein 

sequence best aligns with Z- Agrin (Hrus et al., 2007), suggesting an Agrin-independent 

NMJ formation in nematodes. Moreover, as they could not detect any potential 

alternative exons coding for amino acids resembling the conserved inserts in the Z sites 

of vertebrates, the authors who cloned and characterized Agrin from C. elegans 

concluded that the “Z alternative spice sites are specific to vertebrates”.  

A recent study has shown that heparan sulfate -a proteoglycan- is critical for 

synaptogenesis in C. elegans (Lázaro-Peña et al., 2018). Contrary to the findings in C. 

elegans, we have discovered that the Z alternative splice sites are not specific to 

vertebrates but are also present in invertebrates such as Ciona. In mammals, the Z exons 

of Agrin -termed Z8 and Z11- encode for 8 and 11 AA peptides (Gesemann et al., 1995), 

respectively, but in Ciona the Z exons are even smaller: called Z6 and Z5, they encode 

for only 6 and 5 AAs, respectively (Fig. 2A). The presence of Z exons in Ciona suggests 

an Agrin/Nova-dependent pathway for NMJ formation, development, and maintenance 

that is conserved from tunicates to mammals. Using CRISPR/Cas-9 technology, our 

collaborators Dr. Lionel Christiaen at NYU and Dr. Alberto Stolfi at Georgia Tech 

generated Agrin KO and Nova KO Ciona animals and found that AChRs clustering at the 

NMJ is significantly reduced in KO animals (data not shown). This is consistent with 
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findings in Agrin null mice (Gautam et al., 1996; Burgess et al., 1999) as well as in dKO 

Nova mice (Ruggiu et al., 2009).   

The expression of Z+ Agrin and Nova in Ciona is developmentally regulated. We 

observed a strong expression of Z5 and Z11 in the adult brain and 22.5 hpf at 20° C 

(swimming larvae) of Ciona, respectively. In mammals, the Z8 isoform is the most 

critical one for formation and development of the NMJ, as it is the most potent in 

promoting clustering of AChRs (Gesemann et al., 1995; Ruggiu et al., 2009).  

Interestingly, we detected robust expression of Z- Agrin in unfertilized eggs (Fig. 3), 

suggesting that in tunicates Agrin may be maternally expressed and its mRNA deposited 

in the oocyte, and as such it may be critical for early embryonic development before 

activation of the zygotic genome. Nova’s expression was consistent throughout the 

development but Z+ Agrin first appears at 10 hpf during embryonic development, 

suggesting that Nova alone is not sufficient to induce inclusion of Agrin’s Z exons, and 

that additional layer(s) of complexity in Z+ Agrin expression that are independent of 

Nova are likely at play. At NYU in Dr. Christiaen’s Lab, fluorescent in situ hybridization 

(FISH) was performed to validate the expression of Agrin and Nova in Ciona. We 

observed a strong expression of Agrin in the brain and the motor ganglion (MG) of Ciona 

larvae (data not shown). We also discovered that Nova’s expression is dynamic 

throughout development: the expression of Nova is very weak at gastrula stage but is 

expressed throughout the body (strongest in the brain and MG) at mid-tailbud stage (data 

not shown), including heart precursor cells, suggesting a possible, yet unknown role for 

Nova and AS regulation in heart development. Interestingly, a recent paper showed that 

Agrin is necessary for heart regeneration following myocardial infraction, although 
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whether AS in general and Z exons in particular are involved in this process is not 

known. Moreover, we found a dynamic expression of Nova in motor neurons (data not 

shown): at 15.5 hpf, Nova’s expression is upregulated in motor neuron (MN) 2 (data not 

shown), interestingly, one hour later at 16.5 hpf, Nova’s expression disappears in MN2 

but is upregulated in MN1 and interneuron1 (data not shown).   

We discovered that in Ciona Nova uses its first two KH RNA-binding domains to 

splice Agrin, while KH3 is dispensable. In mammals, Nova uses its KH3 domain for 

binding to its target pre-mRNAs (Jensen et al., 2000). Moreover, by generating N- and C-

terminal we have discovered a unique function of KH3 domain of CiNova deletion 

constructs. Deletion of either N- or C-terminal or both of them together completely 

abolishes splicing of CiAgrin’s Z exons. Since the effect on splicing is the same, this 

result suggests that the N-terminus and the C-terminus of Nova are part of the same 

regulatory domain. Intriguingly, deletion of the KH3 domain rescued the splicing defect 

of either the N- or the C-terminus deletions, or both. Our findings uncover previously 

unknown complex intramolecular regulatory elements that modulate Nova’s splicing 

activity. Our interpretation of our result is as follows: The KH3 domain acts as a negative 

regulator of splicing, while the N- and C-terminus are part of a regulatory domain that 

negatively regulates the activity of KH3. Deletion of the N- and/or the C-termini 

eliminates the domain that suppresses the activity of KH3. As KH3 in turn acts to 

suppress the splicing activity of KH1 and KH2, this explains why a version of Nova that 

lacks its N- and/or C-terminus can no longer splice Agrin even though the KH1 and KH2 

domains of Nova -that is, the two domains that are necessary for Agrin’s splicing- are 

still intact. It’s only by deleting the N- and/or C-terminal domains that act as repressors of 
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KH3 function that the inhibitory activity of KH3 on KH1 and KH2 is unmasked. We 

speculate that this N- and C-terminus domain may act as a regulatory switch that 

determines the usage of specific KH domains thus allowing Nova to switch between two 

distinct splice modalities: one that is KH1- and KH2-dependent and promotes the splicing 

of targets such as Agrin, and a second modality that is KH3-dependent and may regulate 

splicing of a different set of targets. The overall picture is likely to be more complex, and 

it may require further crystallographic and bioinformatical approaches to understand how 

different domains of Nova modulate its splicing activity. Nevertheless, our findings 

uncover previously unsuspected layers of regulation of Nova’s splicing activity.                 

We have determined that CiNova regulates AS by specifically recognizing its 

bona fide binding sequence YCAY on CiAgrin’s pre-mRNA. It is known that Nova 

promotes exon inclusion by binding to intronic YCAY clusters downstream of alternative 

exons; binding to exonic clusters, on the other hand, promote skipping (Ule et al., 2006). 

We have discovered two Nova-dependent intronic splicing enhancers (NISE) elements 

(termed NISE1 and NISE2) in the intron downstream of Z5. In doing so we also 

discovered that at least two, and any two, consecutive YCAY sequences from either 

NISE1 or NISE2 are needed to promote Z exons inclusion (Fig. 8), thus contributing to 

deciphering the splicing code that mediates Nova-dependent AS regulation. The YCAY 

repeats on Nova targets are well conserved in mammals and closely spaced being on 

average 28 nt apart (Ule et al., 2006). In Ciona Agrin the average nt distance between the 

intronic YCAY repeats is 32 when considering the whole intron, but the average nt 

distance is reduced to 10 and 22 nt in NISE1 and NISE2, respectively. However, the 

spacing between single YCAY sequences does not appear to be critical for splicing (Fig. 
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8F) For example, the closest YCAYs in NICE1, YCAY 6 and 7, are just 2 nt apart and 

double mutant YAAY 6-7 is still able to splice correctly. Conversely, YCAYs 12 and 13 

in NICE2 are also just 2 nt apart, but double mutant YAAY12-13 is unable to splice. At 

the other end of the spectrum, YCAYs 13 and 14 are 56 nt apart, and double mutant 

YAAY 13-14 is unable to splice. YCAYs 17 and 18, on the other hand, are 111 nt apart 

but double mutant YAAY 17-18 is still able to splice correctly. Based on our findings, we 

propose a model for Nova-dependent splicing of neural Agrin where Nova uses its KH1 

and KH2 domains to recognize and bind to NISE1 and NISE2 elements on Agrin’s pre-

mRNA, respectively or vice versa, and the N- and C-terminus act as a regulatory switch 

to negatively regulate the inhibitory function of KH3 domain (Fig. 10). 
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2.6 CONCLUSIONS AND FUTURE PERSPECTIVES 

In summary, the findings in this chapter provide enough evidence of coevolution 

between Nova proteins and the cis-regulatory sequences embedded in the downstream 

intron of Z exons of Agrin. We specifically discovered the regulatory mechanism of 

Nova-dependent AS of Z exons of Agrin in Ciona robusta. We show that mutation in the 

cis- and trans-regulatory elements of Agrin and Nova could potentially dysregulate AS, 

which in turn could lead to disorders, particularly neurodegenerative and neuromuscular 

diseases. Since Nova/Agrin function is critical for NMJ formation, development, and 

maintenance; our studies here could be relevant to shed light to the understanding AS 

related diseases including cancer and neurological disorders. 

Besides the major accomplishments described in this project, our study has 

also raised a number of questions that can potentially lead to new findings. For example, 

mSnap25 is differentially spliced at 5a/b site by 5 different splicing factors including 

mNova1 and Nova2, mRbfox1, mMbnl2, and mPtbp2. It would be interesting to explore 

the molecular mechanism of competition between the splicing factors that we see in our 

study. Finding the answer to the question “How and why Rbfox1 regulate splicing of Z 

exons of Agrin?” would be another exciting project to investigate. 
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2.7 TABLES AND FIGURES 

2.7.1 TABLES  

 
Table 1. List of all the forward and reverse primers used to clone Ciona Agrin 
constructs used in this study 

 

 
  

Ci Agr_E40F1 CAAGATGAACAAGCGACTGC
Ci Agr_E41R1 GGACCAGAACCAAGGTCAAA
CiNova E40_YAAY_F CAAGCGACTGCAATTTATTTGGATG
CiNova E40_YAAY_R TTCATCTTGTAGCAAGTCAG
CiNova E41_YAAY_1-2_F ACTGCTAATGGTGGGCAAAGCGAGGGA
CiNova E41_YAAY_1-2_R AGACCGTTACGAGCAGTAGTGCGGAAC
CiNova E41_YAAY_3-4_F CGTCTTAATCTTCGTTTTGACCTTGGTTC
CiNova E41_YAAY_3-4_R ACCGTCATTAATTGCGAGTGCAATATAATC
CiNova I40_YAAY_1-3_F TTAACATCGTGCAAATAATTAGTTAGTTTTAGTGTCATTTG
CiNova I40_YAAY_1-3_R ATTATATGTTGATGCAATTGCAGTTTAACCTAAACATTTCTTAC
CiNova I40_YAAY_4-7_F ATTAATGTCAATAGGAATGTGCGCACGGGA
CiNova I40_YAAY_4-7_R TCATTACAAATTACACTAAAACTAACTAATGATTTGCACGATGTTAAATG
CiNova I40_YAAY_8-10_F TTGTAATTTTGAATTAATGTCAATAGTGCTGTATGAAAAG
CiNova I40_YAAY_8-10_R ACTAACTGTTAAATATTATCACAAAAAATAGGTCTTTAAAAAATG
CiNova I40_YAAY_11-13_F ATAATATTAATGCTAACATTGAGAATGCTG
CiNova I40_YAAY_11-13_R GTTTTAGATTAATTGACCATAAAAAATAAACATAAAG
CiNova I40_YAAY_14_F CTCAAAGCAGTAATAAAAACATTG
CiNova I40_YAAY_14_R CAAGATGTAATATATTTCGAAATC
CiNova I40_YAAY_15-16_F AAAACCCAACTAACTTATTGTGAGTCCAAC
CiNova I40_YAAY_15-16_R ACCTTAATTAGTTTTTAGAACCCATCTATATATAAAG
CiNova I40_YAAY_17_F GTAGGCCAAATAATATAACTCTATAAC
CiNova I40_YAAY_17_R TAAGGTATTCTCTGGGGTTG
CiNova I40_YAAY_18_F AATTTCAATATAATTTTTTTTTGTTTAGGC
CiNova I40_YAAY_18_R TTTAGATTTAGGGTGTGTG
CiAgr I40_YAAY_4-5_F TGTAATGAATTCATGTCCATAGG
CiAgr I40_YAAY_4-5_R AATTACACTAAAACTAACTAATGATTTG
CiAgr I40_YAAY_5-6_F ATTAATGTCCATAGGAATGTGCGC
CiAgr I40_YAAY_5-6_R TCATTACAAATGACACTAAAACTAACTAATGATTTG
CiAgr I40_YAAY_6-7_F TGTCAATAGGAATGTGCGCACGGGA
CiAgr I40_YAAY_6-7_R TTAATTCATGACAAATGACACTAAAACTAACTAATGATTTGC
CiAgr I40_YAAY_1-2_F AACATATAATTTAACATCGTGCAAATCATTAG
CiAgr I40_YAAY_1-2_R GATGCAATTGCAGTTTAACCTAAACATTTCTTAC
CiAgr I40_YAAY_2-3_F GTGCAAATAATTAGTTAGTTTTAGTGTCATTTG
CiAgr I40_YAAY_2-3_R2 GATGTTAAATTATATGTTGATGCAATGGCAG
CiAgr I40_YAAY_3_F ATCGTGCAAATAATTAGTTAGTTTTAG
CiAgr I40_YAAY_3_R GTTAAATGATATGTTGATGCAATG
CiAgr I40_YAAY_12_F ATCTAAAACATAATATTCATGCTAAC
CiAgr I40_YAAY_12_R GAATTGACCATAAAAAATAAACATAAAG
CiAgr I40_YAAY_12-13_F TTAATGCTAACATTGAGAATGCTG
CiAgr I40_YAAY_12-13_R TATTATGTTTTAGATGAATTGACCATAAAAAATAAAC
CiAgr I40_YAAY_4_F AGTTTTAGTGTAATTTGTCATGAATTC
CiAgr I40_YAAY_4_R AACTAATGATTTGCACGATG
CiAgr I40_YAAY_11_F ATGGTCAATTAATCTAAAACATCATATTC
CiAgr I40_YAAY_11_R AAAAAATAAACATAAAGAGTTTTTTTAAATTC
CiAgr I40_YAAY_13_F ACATCATATTAATGCTAACATTGAG
CiAgr I40_YAAY_13_R TTTAGATGAATTGACCATAAAAAATAAAC
CiAgr I40_YAAY_3-4_F TTTAGTGTAATTTGTCATGAATTCATGTCC
CiAgr I40_YAAY_3-4_R ACTAACTAATTATTTGCACGATGTTAAATG
CiAgr I40_YAAY_11-12_F AACATAATATTCATGCTAACATTGAGAATG
CiAgr I40_YAAY_11-12_R TTAGATTAATTGACCATAAAAAATAAACATAAAG

pCi-CiAgrin-I40-YAAY11-12

pCi-CiAgrin-I40-YAAY12

pCi-CiAgrin-I40-YAAY12-13

pCi-CiAgrin-I40-YAAY4

pCi-CiAgrin-I40-YAAY11

pCi-CiAgrin-I40-YAAY13

pCi-CiAgrin-I40-YAAY3-4

pCi-CiAgrin-I40-YAAY4-5

pCi-CiAgrin-I40-YAAY5-6

pCi-CiAgrin-I40-YAAY6-7

pCi-CiAgrin-E41-YAAY1-2

pCi-CiAgrin-I40-YAAY2-3

pCi-CiAgrin-I40-YAAY3

pCi-CiAgrin-I40-YAAY8-10

pCi-CiAgrin-I40-YAAY11-13

pCi-CiAgrin-I40-YAAY14

pCi-CiAgrin-I40-YAAY15-16

pCi-CiAgrin-I40-YAAY17

pCi-CiAgrin-I40-YAAY18

pCi-CiAgrin-E40-41

pCi-CiAgrin-E40-YAAY

pCi-CiAgrin-E41-YAAY1-2

pCi-CiAgrin-I40-YAAY3-4

pCi-CiAgrin-I40-YAAY1-3

pCi-CiAgrin-I40-YAAY4-7

Construct Name Forward(F)/Reverse(R) Promers Primer Sequence
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Table 2. List of all the forward and reverse primers used to clone Ciona Nova 
constructs used in this study 

 

 
  

Ci Nova_MMM_F1_EcoRI ACAGTGGAATTCTATGATGATGACGGCCGTAGTACC
Ci Nova_R1_BamHI ACAGTGGGATCCCTACAGTAACTTAGCCTGCTGTGC
Ci Nova_MEY_F1_EcoRI ACAGTGGAATTCTATGGAGTATGAATGCCAGTACAATGC
Ci Nova_R1_BamHI ACAGTGGGATCCCTACAGTAACTTAGCCTGCTGTGC
Ci Nova_MLN_F1_EcoRI ACAGTGGAATTCTATGCTAAATGCAATGGAGTATGAATGCCAGTACAATGC
Ci Nova_R1_BamHI ACAGTGGGATCCCTACAGTAACTTAGCCTGCTGTGC
CiNova KH1_GDDG_F GGTGATCGGGGACGACGGTCAGATTATTGTACAACTTCAGAAAGATTCAGGG
CiNova KH1_GDDG_R GCCCCCGCAGCGTACCCC
CiNova KH2_GDDG_F GGTAATAGGAGACGACGGCGCAACGATAAAG
CiNova KH2_GDDG_R AGTCCCGCAGTTGTGTTG
CiNova KH3_GDDG_F AGTCCTCGGAGACGACGGAAGGACACTG
CiNova KH3_GDDG_R GCTCCGATCAGGTTTTCG
Ci Nova_MLN_F1_EcoRI ACAGTGGAATTCTATGCTAAATGCAATGGAGTATGAATGCCAGTACAATGC
CiNova KH2_GDDG_R AGTCCCGCAGTTGTGTTG
Ci Nova_MLN_F1_EcoRI ACAGTGGAATTCTATGCTAAATGCAATGGAGTATGAATGCCAGTACAATGC
CiNova KH3_GDDG_R GCTCCGATCAGGTTTTCG
Ci Nova_MLN_F1_EcoRI ACAGTGGAATTCTATGCTAAATGCAATGGAGTATGAATGCCAGTACAATGC
CiNova KH3_GDDG_R GCTCCGATCAGGTTTTCG
Ci Nova_MLN_F1_EcoRI ACAGTGGAATTCTATGCTAAATGCAATGGAGTATGAATGCCAGTACAATGC
CiNova KH3_GDDG_R GCTCCGATCAGGTTTTCG
CiNova ΔN_F ACAGTGGAATTCTATGATTCTTAAAGTTCTAATACCGGGGTACGC
CiNova ΔN_R ACAGTGGGATCCCTACAGTAACTTAGCCTGCTGTGC
CiNova ΔNΔC_F ACAGTGGAATTCTATGATTCTTAAAGTTCTAATACCGGGGTACGC
CiNova ΔNΔC_R ACAGTGGATCCCTAGCTTGACTTTTCGATGCTTAGGATACTCA
CiNova ΔNΔKH3_F ACAGTGGAATTCTATGATTCTTAAAGTTCTAATACCGGGGTACGC
CiNova ΔNΔKH3_R ACAGTGGGATCCCTACAGTAACTTAGCCTGCTGTGC
CiNova ΔNΔKH3ΔC_F ACAGTGGAATTCTATGATTCTTAAAGTTCTAATACCGGGGTACGC
CiNova ΔNΔKH3ΔC_R ACAGTGGATCCCTAGCTTGACTTTTCGATGCTTAGGATACTCA
CiNova MLN ΔC-ter_F ACAGTGGAATTCTATGCTAAATGCAATGGAGTATGAATGCCAGTACAATGC
CiNova MLN ΔC-ter_R ACAGTGGGATCCCTACGTAATAAGAAACTGCGCAGTCTGT
CiNova MLN ΔKH3_F ACAGTGGAATTCTATGATTCTTAAAGTTCTAATACCGGGGTACGC
CiNova MLN ΔKH3_R ACAGTGGATCCCTAGCTTGACTTTTCGATGCTTAGGATACTCA
CiNova MLN ΔKH3ΔC_F ACAGTGGAATTCTATGATTCTTAAAGTTCTAATACCGGGGTACGC
CiNova MLN ΔKH3ΔC_R ACAGTGGATCCCTAGCTTGACTTTTCGATGCTTAGGATACTCA
CiNova MMM ΔC-ter_F ACAGTGGAATTCTATGATGATGACGGCCGTAGTACC
CiNova MMM ΔC-ter_R ACAGTGGGATCCCTACGTAATAAGAAACTGCGCAGTCTGT
CiNova MLN ΔKH3ΔC_F ACAGTGGAATTCTATGATGATGACGGCCGTAGTACC
CiNova MLN ΔKH3ΔC_R ACAGTGGATCCCTAGCTTGACTTTTCGATGCTTAGGATACTCA
CiNova MMM ΔKH3ΔC_F ACAGTGGAATTCTATGATGATGACGGCCGTAGTACC
CiNova MMM ΔKH3ΔC_R ACAGTGGATCCCTAGCTTGACTTTTCGATGCTTAGGATACTCA

pEGFP-CiNova MLN ΔKH3ΔC

pEGFP-CiNova MMM ΔC-ter

pEGFP-CiNova MLN ΔKH3ΔC

pEGFP-CiNova MMM ΔKH3ΔC

pEGFP-CiNova ΔN

pEGFP-CiNova ΔNΔC

pEGFP-CiNova ΔNΔKH3

pEGFP-CiNova ΔNΔKH3ΔC

pEGFP-CiNova MLN ΔC-ter

pEGFP-CiNova MLN ΔKH3

pEGFP-CiNova_MLN-KH3-GDDG

pEGFP-CiNova_MLN-KH1/2-GDDG

pEGFP-CiNova_MLN-KH1/3-GDDG

pEGFP-CiNova_MLN-KH2/3-GDDG

pEGFP-CiNova_MLN-KH1/2/3-GDDG

Construct Name Forward(F)/Reverse(R) Promers Primer Sequence

pEGFP-CiNova_MMM

pEGFP-CiNova_MEY

pEGFP-CiNova_MLN

pEGFP-CiNova_MLN-KH1-GDDG

pEGFP-CiNova_MLN-KH2-GDDG



58 
 

Table 3. List of all the forward and reverse primers used to clone mouse Nova and 
Agrin constructs used in this study 

 

 
 
 
Table 4. List of all the forward and reverse primers used to clone other minigene 
and cDNA constructs used in this study 

 

 
  

mNova1_F_HindIII ATGCTCAAGCTTCGATGATGGCGGCAGCTCCCATTC
mNova1_R_KpnI ATGCTCGGTACCTCAACCCACTTTCTGAGGATTGGCA
mNova2_F_EcoRI AGCTTCGAATTCTATGGAGCCCGAGGCCCCGG
mNova2_R_BamHI ATGGTCGGATCCTCATCCCACTTTCTGTGGGTTTGAAGCCCTCC
mN1 KH1_GDDG_F TATAATTGGGGACGACGGACAGACAATTGTTCAG
mN1 KH1_GDDG_R GATCCAGCAGCATAACTAG
mN1 KH2_GDDG_F GATAATAGGGGACGACGGTGCTACTGTGAAGGC
mN1 KH2_GDDG_R AGACCTGCTGTGCTGTTG
mN1 KH3_GDDG_F AATACTTGGCGACGACGGGAAAACCTTAGTG
mN1 KH3_GDDG_R GCACCAACTAAGTTTTCTG
mNova1_F_HindIII ATGCTCAAGCTTCGATGATGGCGGCAGCTCCCATTC
mN1 KH2_GDDG_R AGACCTGCTGTGCTGTTG
mNova1_F_HindIII ATGCTCAAGCTTCGATGATGGCGGCAGCTCCCATTC
mN1 KH3_GDDG_R GCACCAACTAAGTTTTCTG
mNova1_F_HindIII ATGCTCAAGCTTCGATGATGGCGGCAGCTCCCATTC
mN1 KH3_GDDG_R GCACCAACTAAGTTTTCTG
mNova1_F_HindIII ATGCTCAAGCTTCGATGATGGCGGCAGCTCCCATTC
mN1 KH3_GDDG_R GCACCAACTAAGTTTTCTG
mN2 KH1_GDDG_F AATCATCGGCGACGACGGCCAGACCATCCAAGCTTCG
mN2 KH1_GDDG_R GAGCCGGCGGCGTAGCTG
mN2 KH2_GDDG_F GATCATCGGTGACGACGGAGCGACCGTGAAGG
mN2 KH2_GDDG_R AGTCCTGCCGTGCTGTTG
mN2 KH3_GDDG_F CATCCTGGGCGACGACGGCAAGACGCTGG
mN2 KH3_GDDG_R GCCCCCACCAGGTTCTCG
mNova2_F_EcoRI AGCTTCGAATTCTATGGAGCCCGAGGCCCCGG
mN2 KH2_GDDG_R AGTCCTGCCGTGCTGTTG
mNova2_F_EcoRI AGCTTCGAATTCTATGGAGCCCGAGGCCCCGG
mN2 KH3_GDDG_R GCCCCCACCAGGTTCTCG
mNova2_F_EcoRI AGCTTCGAATTCTATGGAGCCCGAGGCCCCGG
mN2 KH3_GDDG_R GCCCCCACCAGGTTCTCG
mNova2_F_EcoRI AGCTTCGAATTCTATGGAGCCCGAGGCCCCGG
mN2 KH3_GDDG_R GCCCCCACCAGGTTCTCG

Primer Sequence

pEGFP-mNova1-KH1/2-GDDG

pEGFP-mNova1-KH1/3-GDDG

pEGFP-mNova1-KH2/3-GDDG

Construct Name

pEGFP-mNova1

pEGFP-mNova1-KH1-GDDG

pEGFP-mNova2

pEGFP-mNova2-KH1-GDDG

pEGFP-mNova2-KH2-GDDG

Forward(F)/Reverse(R) Promers

pEGFP-mNova2-KH3-GDDG

pEGFP-mNova1-KH2-GDDG

pEGFP-mNova1-KH3-GDDG

pEGFP-mNova2-KH1/2/3-GDDG

pEGFP-mNova2-KH1/2-GDDG

pEGFP-mNova2-KH1/3-GDDG

pEGFP-mNova2-KH2/3-GDDG

pEGFP-mNova1-KH1/2/3-GDDG

mSnap25_I4F1_XhoI ACAGTGCTCGAGCTTGCAGTTTCCCCAACTTGGT
mSnap25_I5R1_BamHI ACAGTGGGATCCATCTGAGCGACTGCTTCCTGTTAG
mPtbp2_F_AgeI ACAGTGACCGGTATGGACGGAATTGTCACTGAGGT
mPtbp2_R_SalI ACAGTGGTCGACTTAGATTGTTGACTTGGAGAAAGACACTCTCAG
RbFox1_F1_XhoI ACAGTGCTCGAGCTAATTGTGAAAGAGAGCAGCTGAGG
RbFox1_R1_SalI ACAGTGGTCGACTTAAGTGGCACCAACGCCG
Mbnl2_F1_XhoI ACAGTGCTCGAGCTGCCTTGAACGTTGCCCC
Mbnl2_R1_SalI ACAGTGGTCGACTTACTTAAGTTTCAGAATTATCTGATTGGCTGTGG

Forward(F)/Reverse(R) Promers Primer Sequence

mMbnl2

mPtbp2

Construct Name

mSnap25 minigene

mRbfox1
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Table 5. List of all the forward and reverse primers used to detect spliced isoforms 
of Agrin, Snap25, Dcc minigenes by semi-quantitative RT-PCR analysis 

 

 
 
 
Table 6. Co-transfection protocol of minigene and splicing factor cloned in pCi-neo 
and pEGFP-C1 vector respectively 

 

 
 
 
Table 7. Co-transfection protocol of minigene and splicing factor cloned in pSPL3 
and pCAGGS-3x-Flag vector respectively 

 

 
  

Minigenes RT-PCR primers(F-Forward, R=Reverse) Sequence PCR cycles Anealing temperature 
pCI_RT_F GTGTCCACTCCCAGTTCAATTACAG
pCI_RT_R TGTCTGCTCGAAGCATTAACCC
V1_F TCTGAGTCACCTGGACAACC
V2_R ATCTCAGTGGTATTTGTGAGC
mAgr_31F2 TTTGATGGGCGGACCTACATCG
3xFLAG_R GCCGTCGTGGTCTTTGTAGTCTCTA
mDcc_E16F1 TCTCATTATGTAATCTCCTTAAAAGC
mDcc_E17R1 CTGCCCAGCTGACCCTCACAG

60℃

55℃

60℃

52℃

Mouse Agrin

Ciona  Agrin

Mouse Dcc

Mouse Snap25

27

35

30

30

pCi-neo_minigene (µL) 1x = 0.5 µg 1x = 0.5 µg 1x = 0.5 µg
pEGFP_Splicing factor (µL) 0x = 0.0 µg 1x = 0.5 µg 4x = 2.0 µg
pEGFP-C1_Empty vector (µL) 4x = 2.0 µg 3x = 1.5 µg 0x = 0.0 µg
Total DNA (µg) 2.5 µg 2.5 µg 2.5 µg
PEI (µL) 7.5 µL 7.5 µL 7.5 µL
Opti-MEM (µL) Upto 200 µL Upto 200 µL Upto 200 µL

pSP_minigene (µL) 1x = 0.5 µg 1x = 0.5 µg 1x = 0.5 µg
pCAGGS_Splicing factor (µL) 0x = 0.0 µg 1x = 0.5 µg 4x = 2.0 µg
pcDNA3_Empty vector (µL) 4x = 2.0 µg 3x = 1.5 µg 0x = 0.0 µg
Total DNA (µg) 2.5 µg 2.5 µg 2.5 µg
PEI (µL) 7.5 µL 7.5 µL 7.5 µL
Opti-MEM (µL) Upto 200 µL Upto 200 µL Upto 200 µL
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2.7.2 FIGURES AND FIGURE LEGENDS 

 

 
 
Figure 1. Cloning and characterization of Nova and Agrin from Ciona robusta.  

(A, B) Full-length (FL) Nova and Agrin from larvae at 22.5 hpf at 20° C and adult brain 
were detected by semi-quantitative RT-PCR. FL Agrin and Nova are approximately 8 
kilobases and 2 kilobases, respectively. (C) Detection of all the possible Z isoforms (Z+ 
and Z-) of Agrin from Ciona adult brain and larvae at 22.5 hpf at 20° C by semi-
quantitative RT-PCR. (D) Amino acid (AA) sequence alignment of different CiNova 
isoforms; the isoforms are named after the first 3 AA. Alternative first exon 1a usage by 
CiNova_MMM is highlighted as purple with NLS bolded and shown in yellow. Usage of 
alternative exon 1b by CiNova_MLN and CiNova_MEY is highlighted as light gray; both 
isoforms lack a canonical NLS. CiNova_MLN and CiNova_MEY use different starting 
AUG codons from the same pre-mRNA. Asterisks represent missing AA from CiNova 
MEY and hyphens represent sequence identity beside KH domains. The KH1, KH2, and 
KH3 domains are highlighted as yellow, green, and turquoise, respectively. The GXXG 
motifs present in each KH domain are bolded and shown in red.  
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Figure 2. Nova promotes inclusion of Agrin’s Z exons in a dose-dependent manner.  

(A, B) Schematic illustration of Ciona Agrin minigenes containing the genomic region 
between exons 40 and 41 in Ciona, and exons 31 and 33 in mouse. The constitutive exons 
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(exon 40 and 41 in Ciona; exon 31 and 34 in mouse) are shown in dark blue, the 
alternative Z exons (Z6 and Z5 in Ciona; exon 32/Z8 and 33/Z11 in mouse) are shown in 
red. Thick lines between exons represent introns. Intron and exon sizes are shown in 
nucleotides. (C) Schematic representation of Nova protein structure. Nova harbors 3 KH 
RNA-binding domains and a spacer sequence in between KH2 and KH3. N/C-terminus 
and GXXG motifs in each KH domain are also shown. (D) CiAgrin minigene splicing 
assay. Constant amounts of Ciona Agrin (0.5 g/well; 1x) minigene were co-transfected 
in HEK293T cells in 6-well plates with increasing amounts of EGFP-CiNova (0 g = 0x, 
0.5 g = 1x, 2 g = 4x) constructs (MMM, MLN, and MEY). Total RNA was extracted 
48h after transfection and subjected to semi-quantitative RT-PCR analysis. All 3 CiNova 
isoforms are able to promote inclusion of CiAgrin’s Z exons in a dose-dependent manner, 
giving rise to Z11 (Z6+Z5) and Z5 splice forms. The identity of the RT-PCR products 
was confirmed by cloning and direct sequencing. (E) The expression of all 3 EGFP-
CiNova protein was detected by western blotting. All 3 EGFP CiNova constructs were 
co-transfected with CiAgrin minigene in HEK293T cells as in D. The anti-EGFP 
antibody recognizes both EGFP-CiNova and EGFP from EGFP-C1 empty vector. All 3 
EGFP-CiNova proteins were robustly expressed in a dose-dependent manner. (F) AS of 
mouse Agrin minigene and 2 cDNA constructs of mNova. Only Z8 isoform of mouse 
Agrin was detected by semi-quantitative RT-PCR when mouse Agrin minigene was 
individually co-transfected with mNova1 and mNova2. mNova promotes inclusion of Z8 
exon of mouse Agrin in a dose-dependent manner. (G) mRbfox1 strongly promotes 
inclusion of Z exons. Z8 and Z19 isoforms of Z+ Agrin were detectable by RT-PCR. (H) 
Schematic representation of the genomic region of Dcc between exons 16 and 17 used to 
generate a minigene construct. Intron and exon sizes are shown in nucleotides. 
Constitutive exons are shown as dark blue boxes, while an alternative version of exon 17 
is shown as a red box. Use of an alternative 3’ splice site at exon 17 gives rise to a longer 
version of Dcc. Thick lines between exons represent introns. (I) Total RNA from 
HEK293T cells co-transfected with mDcc minigene and mouse Nova1 or Nova2 was 
extracted and subjected to semi-quantitative RT-PCR analysis. Both Nova1 and Nova2 
promote the usage of the distal 3’ splice site and the generation of the Dcc long isoform 
in a dose-dependent manner.  
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Figure 3. Expression of CiAgrin’s Z isoforms is developmentally regulated.  

Total RNA from unfertilized eggs and embryos at different developmental stages (hpf at 
20° C), plus brain and heart from adult animals, was extracted and subjected to semi-
quantitative RT-PCR analysis using gene-specific primers. Primers located in constitutive 
exon 40 and 41 surrounding the Z site detect all isoforms of CiAgrin. While Agrin is 
robustly expressed in all samples analyzed including unfertilized eggs, Z+ isoforms start 
to be expressed at 10 hpf and later stages, including adult brain, with strongest expression 
in swimming larvae (top panel).This result was confirmed using primers that specifically 
detect the Z11 (Z6+Z5) isoform of CiNova, with strongest expression in swimming 
larvae (second panel). CiNova is expressed at low levels in fertilized eggs and adult heart, 
and robustly throughout Ciona larval development (third panel). Actin was used as 
internal control as it is robustly in all samples analyzed (fourth panel). 5.5 hpf at 20° C: 
Late gastrula/early neurula; 7.5 hpf at 20° C: Tailbud; 22.5 hpf at 20° C: Swimming 
larvae. 
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Figure 4. CiNova requires both KH1 and KH2 domains for splicing.  

(A) Schematic representation of CiNova protein. Its 3 KH domains are labeled in 
different colors. GXXG motifs (green) present in WT protein were mutated to GDDG 
(dark red). (B) CiAgrin minigene splicing assays were performed in HEK293T cells as 
described in Figure 2, using WT and single KH GDDG mutants of CiNova. WT CiNova 
promotes inclusion of Agrin’s Z exons, while KH1 and KH2 GDDG mutants failed to 
promote Z exons inclusion. KH3 GDDG mutant is indistinguishable from WT. (C) 
CiAgrin minigene splicing assay using WT and double/triple KH GDDG mutants. 
Double and triple KH GDDG mutants fail to promote inclusion of Agrin‘s Z exons.  
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Figure 5. Novel function of N/C-terminals and KH3 domain of CiNova.  

HEK293T cells were co-transfected with CiAgrin minigene and CiNova WT and 
7different deletion mutants. (A) AS of WT CiNova and its 4 deletion mutants: ΔN-ter, 
ΔC-ter, ΔNΔC-ter, and ΔKH3. All these deletion mutants are unable to promote inclusion 
of Agrin’s Z exons with the exception of ΔKH3 mutant, which is indistinguishable from 
WT. (B) Minigene splicing assay of WT CiNova and N/C-ter deletion mutants coupled 
with KH3 deletion. Surprisingly, deletion of KH3 rescues the splicing defects of N/C-ter 
deletion mutants.  
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Figure 6. Alternative splicing of CiAgrin with WT and mutant CiNova_MMM 
constructs.  

(A) CiAgrin minigene splicing assays were performed in HEK293T cells as described in 
Figure 2 (except 4x Nova transfection was omitted), using WT and single KH GDDG 
mutants of CiNova. Cells were co-transfected with constant amounts of Ciona Agrin 
minigenes and increasing amounts of CiNova (WT vs. KH GDDG mutants). Total RNA 
was extracted and subjected to semi-quantitative RT-PCR analysis. WT CiNova 
promotes inclusion of Agrin’s Z exons, while KH1 and KH2 GDDG mutants failed to 
promote Z exons inclusion.  KH3 GDDG mutant is indistinguishable from WT. (B) 
CiAgrin minigene splicing assay using WT and double/triple KH GDDG mutants. 
Double and triple KH GDDG mutants fail to promote inclusion of Agrin‘s Z exons. (C) 
Alternative splicing of WT CiNova_MMM and its 3 deletion mutants: ΔN-ter, ΔC-ter, 
and ΔNΔC-ter. All these deletion mutants are unable to promote inclusion of Agrin’s Z 
exons. (D) Minigene splicing assay of KH3 deletion and N/C-ter deletion mutants 
coupled with KH3 deletion. KH3 deletion mutant is indistinguishable from WT in its 
ability to promote splicing of the Z exons. Deletion of KH3 rescues the splicing defects 
of N/C-ter deletion mutants.  
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Figure 7. Mouse Nova2 requires its third KH3 domain to splice mouse Agrin.  

(A, C) Mouse Agrin minigene splicing assays were performed in HEK293T cells as 
described in Figure 2, using WT and KH GDDG mutants of mNova1 (A, B) and Nova2 
(C, D). Cells were co-transfected with constant amounts of mouse Agrin minigenes and 
increasing amounts of Nova (WT vs. KH GDDG mutants). Total RNA was extracted and 
subjected to semi-quantitative RT-PCR analysis. (A) The expected Z8 isoforms were 
detected when mouse Agrin minigene was co-transfected with WT and single KH GDDG 
mutants of Nova1. (B) Double and triple KH GDDG mutants of Nova1 completely 
abolish splicing of Z exons of mouse Agrin, suggesting that all 3 KH domains of Nova1 
cooperate to splice Agrin. (C) The expected Z8 isoforms were detected when mouse 
Agrin minigene was co-transfected with WT and single KH1 and KH2 GDDG mutants of 
Nova2, while Nova2 KH3 GDDG mutant is unable to splice mouse Agrin. (D) The 
expected Z8 isoforms were detected when mouse Agrin minigene was co-transfected 
with WT Nova2, but double and triple KH GDDG mutants of Nova2 completely abolish 
splicing of Z exons of mouse Agrin, suggesting that Nova2 primarily uses KH3 to splice 
Agrin, but KH1 and KH2 also contribute to its splicing activity. 
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Figure 8. Exonic YCAY sequences are not required for Nova-dependent inclusion of 
Agrin’s Z exons, while a bipartite Nova-dependent intronic splicing enhancer 
mediates inclusion of Agrin’s Z exons.  

(A) Schematic illustration of Ciona Agrin minigene containing the genomic region 
between exons 40 and 41. The constitutive exons (exon 40 and 41) are shown in dark 
blue color and the alternative Z exons (Z5 and Z6) are shown in red color. YCAY 
(Y=C/U) sequences (black bars indicate YCAY sequence) are bona fide Nova binding 
sequences and are exclusively located downstream of exon Z5 and within exons 40 and 
41. Two clusters of YCAY sequences (red lines downstream of exon Z5) are the Nova 
binding sites and are called Nova intronic splicing enhancer 1 and 2 (NISE1, YCAY1-6 
and NISE2, YCAY11-14. (B) CiAgrin minigene splicing assays were performed in 
HEK293T cells as described in Figure 2 using WT and exonic YAAY mutant CiAgrin 
minigenes and WT CiNova. Exonic YAAY mutations don’t abolish splicing, suggesting 
that exonic YCAY sequences are not required for splicing. *: RT-PCR products form 
exon 41 mutants run aberrantly on agarose gel. (C, D) CiAgrin minigene splicing assays 
were performed using WT and 3 NISE1 (C) and NISE 2 (D) YAAY mutants with WT 
CiNova. For CiNova to effectively splice Z exons of CiAgrin, at least two consecutive 
YCAY sequences from each NISE clusters are needed. Single YAAY CiAgrin mutants 
are indistinguishable from WT, while double YAAY mutants are unable to include 
CiAgrin’s Z exons. (E) Two NISE YCAY clusters are required for CiNova to promote 
splicing of CiAgrin’s Z exons. Heat map represents the Nova-dependent splicing activity, 
where a green rectangle means splicing is active and a red rectangle means splicing is 
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abolished. X axis represents the position and number of YCAY sequences on exon 40, 
intron 40, and exon 41. Y axis represents all 32 YAAY mutant minigenes of CiAgrin (3 
exonic and 29 intronic) generated in this study. Two NISE clusters (NISE1, YCAY1-6 
and NISE2, YCAY11-14) of YCAY sequences are critical for CiNova-dependent 
splicing of CiAgrin’s Z exons. Single YAAY mutations from either NISE clusters cannot 
disrupt splicing but two or more than two mutations in YCAY completely abolish 
splicing, suggesting that 2 is the minimum number of YCAY sequences required in each 
cluster to be splicing-competent. (F) Spacing between the YCAY sequences does not 
appear to be critical for splicing.  
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Figure 9. Splicing of Z exons of Agrin is species-specific.  

(A) Total RNA from HEK293T cells co-transfected with CiAgrin minigene and Nova 
from either Ciona or mouse was extracted and subjected to semi-quantitative RT-PCR 
analysis as described in Figure 2. CiNova promotes inclusion of the Z exons of CiAgrin 
but mouse Nova cannot splice the Z exons of Ciona Agrin. (B) Total RNA from 
HEK293T cells co-transfected with mouse Agrin minigene and Nova from either mouse 
or Ciona extracted and subjected to semi-quantitative RT-PCR analysis. Mouse Nova 
promotes inclusion of the Z exons of mouse Agrin, while CiNova cannot splice the Z 
exons of mouse Agrin. 
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Figure 10. A model of CiNova protein action on CiAgrin pre-mRNA.  

KH1 and KH2 domains of Nova interact with NISE1 and NISE2 on CiAgrin’s pre-
mRNA, (respectively or vice versa). The KH3 domain is a negative regulator of Agrin’s 
splicing, while both N- and C-terminus domains block the inhibitory activity of KH3. We 
suggest that Nova in Ciona may regulate splicing using two different modalities: one 
mode requires KH1 and KH2 domains to regulate AS of targets such as Agrin; the other 
mode requires the KH3 domain to regulate AS of other, yet to be identified non-Agrin 
targets. The N/C-terminus domain acts as a regulatory switch between the two splice 
modalities. 
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Figure 11. Nova1, Nova2, Ptbp2, and Rbfox1 regulate alternative splicing of Snap25.  

HEK293T cells were co-transfected with constant amount of mSnap25 (1x) and 5 
different splicing factors including mNova1/2, mPtbp2, mRbfox1, and mMbnl2. 
Different amounts of splicing factor (0 g = 0x, 0.5 g = 1x, 2 g = 4x) were used. (A) 
Schematic illustration of mSnap25 minigene cloned into pSPL3 exon trapping vector. 
Vector exons V1 and V2 are depicted as dark blue boxes and alternative exons 5a/5b of 
mSnap25 are shown in red boxes. The thick dark line represents the introns of mSnap25, 
and the thin line represents the vector intron. The sizes of intronic and exon regions from 
Snap25 genomic region are indicated. The location of the restriction sites NdeI on exon 
5a and AvrII on exon 5b are indicated, alongside the restriction sites used for cloning. (B) 
Minigene splicing assay of mSnap25 minigene and 5 expression constructs of mNova1, 
mNova2, mPtbp2, mRbfox1, and mMbnl2. A dose-dependent inclusion of alternative 
5a/5b exons was detected by semi-quantitative RT-PCR (*shadow band of 5a/5b) in all 
samples. (C, D, E, F, G) Total RNA from HEK293T cells were extracted after co-
transfection with mSnap25 minigene and subjected to semi-quantitative RT-PCR 
analysis. RT-PCR products were digested with NdeI and AvrII to determine which exon 
inclusion is promoted by mNova1, mNova2, mRbfox1, mMbnl2, and mPtbp2. If exon 5a 
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is included, digestion of the RT-PCR products with the exon 5a-specific restriction 
enzyme NdeI generates two fragments of 194 and 186 bp; conversely, if exon 5b is 
included, digestion of the RT-PCR products with the exon 5b-specific restriction site 
AvrII generates two fragments of 211 and 171 bp. (C) mNova1 very weakly promotes the 
inclusion of both 5a and 5b in a dose-dependent manner, while mNova2 (D) and 
mRbfox1 (E) promotes the inclusion of 5b and skipping of 5a of mSnap25 in a dose-
dependent manner. (F) mPtbp2 only promotes the inclusion of 5a of mSnap25 minigene 
(G) mMbln2 regulates inclusion of both exons but the inclusion of 5a is stronger than 5b.  
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Figure 12. Competition between splicing factors determines splicing outcome of 5a 
and 5b of mSnap25.  

(A, B, C, D, E, F) HEK293T cells were co-transfected with mSnap25 minigene and 2 
different splicing factors (one with varying amounts and other one with constant amount). 
Total RNA was extracted 48 hours after transfection and subjected to semi-quantitative 
RT-PCR analysis. RT-PCR products were digested with NdeI and AvrII to determine 
which exon inclusion or skipping is promoted by each splicing factor. (A) RT-PCR 
analysis of cells co-transfected with constant amounts of mPtbp2 in combination with 
increasing amounts of mRbfox1. mRbfox1 promotes inclusion of 5b when competing 
with mPtbp2 for mSnap25 splicing. (B) mPtbp2 promotes the inclusion of 5a and 
skipping of 5b in a dose-dependent manner when competing with constant amount of 
mRbfox1. (C) mNova1 promotes skipping of 5b in a dose-dependent manner when 
competing with constant amount of mRbfox1. (D) mRbfox1 promotes inclusion of 5b 
when competing with constant amount of mNova1. (E, F) No competition is observed 
between mRbfox1 and mNova2. 
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CHAPTER 3  
 
INVESTIGATING HOW MUTATIONS IN SLC25A10 
MAY AFFECT SPLICING IN A PATIENT WITH 
EPILEPTIC ENCEPHAPLOPATHY  
 

3.1 ABSTRACT 

Mitochondrial diseases are a plethora of inherited neuromuscular disorders 

sharing defects in mitochondrial respiration, but largely different from one another for 

genetic basis and pathogenic mechanism. The laboratory of Dr. De Grassi performed 

whole exome sequencing in a familiar trio (trio-WES) with a child affected by severe 

epileptic encephalopathy associated with respiratory complex I deficiency and 

mitochondrial DNA depletion in skeletal muscle. By trio-WES they identified biallelic 

mutations in SLC25A10, a nuclear gene encoding a solute carrier protein that transports 

molecules for Kreb’s cycle and is a part of complex I in mitochondria. The patient 

inherited 3 mutations from his parents: 1 from his mother and 2 from his father. The 

maternal-derived mutation introduces a stop codon in exon 3. Mutations from the 

paternal allele are located in exon 9 and intron 10. Although the exonic mutation is a 

synonymous mutation, the patient had very low levels of SLC25A10 mRNA and was 

devoid of protein. Using minigene splicing studies, we discovered that paternal-derived 

mutations cause aberrant splicing, providing evidence for the mechanism that leads to the 

failure to make a functional protein product in the patient. Our work underlies the 
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importance of splicing in neurodegenerative disorders and proposes a molecular 

mechanism that explains disease pathology. 

3.2 BACKGROUND  

The mitochondrial respiratory complex I couples the transfer of electrons from 

NADH to ubiquinone and the translocation of protons from the mitochondrial matrix to 

the intermembrane space, contributing to oxidative phosphorylation. Clinical presentation 

of complex I deficiency is extremely heterogeneous, ranging from fatal neonatal disease 

to adult-onset neurodegenerative disorders (Fassone et al., 2012), and often associates to 

epilepsy (Khurana et al., 2008). The vast genetic heterogeneity of isolated complex I 

deficiency is caused by mutations in mitochondrial DNA (mtDNA) or, in most cases, in 

nuclear-DNA genes encoding structural subunits, assembly factors, or other proteins with 

apparently complex I unrelated functions (see OMIM 252010). Further, the activity of 

complex I is susceptible to environmental factors, such as oxidative stress (Musatov et 

al., 2012). SLC25A10 (also known as DIC) transports dicarboxylates and phosphate 

across the inner mitochondrial membrane and is conserved from yeast to mammals 

(Palmieri et al., 1996; Fiermonte et al., 1998). As reviewed in (Lash et al., 2015), 

SLC25A10 inhibition has been repeatedly reported to cause reduced levels of 

mitochondrial glutathione (GSH) and impairment of complex I activity in rat neurons 

(Kamga et al., 2010). Here we report the first human mutations abolishing SLC25A10 

function in a patient affected by a progressive form of epileptic encephalopathy and 

severe hypotonia associated with complex I deficiency. 
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3.2.1 Case description 

This study was approved by the Pediatric Ethics Committee of the Tuscany 

Region, Italy (in the context of the Project DESIRE) and informed consent was signed by 

the patient’s parents. The proband is a 9-year-old boy born at term from 

nonconsanguineous healthy parents of two additional healthy children. Hypospadias, 

bilateral hydrocele and unilateral right hearing loss were noticed in the patient. At 3 

months, generalized jerking and infantile spasms appeared in multiple per day episodes. 

Clinical examinations showed severe hypotonia, absent eye tracking and poor 

spontaneous movements. EEG revealed multifocal epileptiform discharges and a 

suppression burst pattern. MRI, initially normal, showed high signal intensity of the 

white matter at 1 year and also thinning of the CC at 4 years of age. Clinical conditions 

evolved in intractable tonic spasms and focal seizures and quadriparesis, which 

progressively became spastic and dyskinetic. Growth parameters have always been 

within the normal range and neuropsychiatric evaluations revealed intellectual ability in 

the normal-high range. Multiple metabolic investigations, cerebrospinal-fluid amino 

acids, neurotransmitter levels and visual evoked potentials were normal. Blood analyses 

revealed microcytic anemia, which was improved after iron supplementation, and 

increased lactate (3.64 mM) and lactate/pyruvate (25.58) levels. The analysis of the four 

mitochondrial respiratory complexes from muscle homogenates, performed at 18 months, 

indicated reduced respiratory complex I activity (27% of the mean control value) and 

decreased mtDNA content (40% lower than the mean control value). Multiple 

antiepileptic drug trials and ketogenic diet were ineffective against seizures.  
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3.2.2 Compound heterozygous mutations in SLC25A10  

Pathogenic mutations in the mitochondrial genome were excluded by Sanger 

sequencing. Three independent whole exome sequencing experiments (trio-WES) were 

performed on the genomic DNA of the patient and his parents. Compound heterozygous 

mutations were identified in SLC25A10. A heterozygous SLC25A10 nonsense mutation 

was inherited from the mother (NM_001270888.1: c.304A>T, p.Lys102*, Fig.). This 

mutation, absent in the ExAC database (September 2017), generates a prematurely 

truncated protein lacking ~70% of the amino acid sequence. Two heterozygous mutations 

were inherited from the father: a synonymous mutation (NM_001270888.1: c.684C>T, 

p.Pro228Pro) annotated in the dbSNP146 database (rs114621664) with frequency of 

0.0014 in the ExAC database and an intronic mutation (NM_001270888.1: c.790–

37G>A) annotated in the dbSNP146 database (rs200706742) with frequency of 0.0011 in 

the ExAC database. Mutations have been submitted to the NCBI ClinVar database 

(www.ncbi.nlm.nih.gov/clinvar/, accessions SCV000611119 and SCV000611120). 

The quantitative Real Time-PCR (qRT-PCR) analysis, conducted on cDNA obtained 

from cultured fibroblasts, showed a 10-fold decrease in SLC25A10 transcript level in the 

patient relative to control. PCR primer-pairs were designed to amplify two distinct 

portions of the SLC25A10 cDNA, which span exons 3–8 and exons 3–11, respectively. 

The former was detected in both the patient and control. The sequence of this fragment 

corresponds to the paternally inherited allele, suggestive of nonsense mediated decay of 

the maternally inherited one. The fragment spanning exons 3–11 is instead virtually 

absent in the patient cells, suggesting abnormal RNA splicing in-between exons 9 and 11. 

The paternally inherited mutations are predicted to break an exon splicing enhancer in 

exon 9 and to create a new one in intron 10, respectively. 

https://www.ncbi.nlm.nih.gov/snp/?term=rs114621664
https://www.ncbi.nlm.nih.gov/snp/?term=rs200706742
https://www.ncbi.nlm.nih.gov/clinvar/variation/446175/
https://www.ncbi.nlm.nih.gov/clinvar/variation/446176/
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3.3 MATERIALS AND METHODS 

3.3.1 Transfection with SLC25A10 minigene 

The day before the transfection 0.6 x 106 HEK293T cells were seeded per well in 

a 6-well plate (USA Scientific). On the day transfection, a total of 1 g DNA of 

SLC25A10 minigene was used to transfect each of 6 well plate(s) and 3 L of PEI 

(1mg/mL) was used in a ratio of 1:3 (DNA : PEI). The total volume of the DNA mixture 

was 200 L. First, the exact amount of DNA in L was pipetted in 1.5 mL Eppendorf 

tube (Eppendorf) and Opti-MEM media was used to bring the volume to 197 L. Then 

the mixture was vortexed thoroughly. Finally, 3 L of PEI were added, vortexed, and 

centrifuged briefly. The mixture was then incubated for 15 minutes at room temperature. 

In the meantime, medium in the cells was aspirated and 2 mL new DMEM medium was 

added. After 15 minutes of incubation 200 L of reaction mixture was added to the cell 

and the plate was cross-shanked gently. The plate was then Incubated for 48 hours at 37 ° 

C.  

For other materials and methods please refer to “2.2 MATERIALS AND 

METHODS” section in Chapter 2. 
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3.4 RESULTS 

3.4.1 SLC25A10 mutations cause RNA depletion and aberrant RNA splicing 

To investigate if paternally derived mutations lead to aberrant splicing, 5 pair of 

WT and mutant minigenes were generated (Fig. 13J) containing the genomic region of 

SLC25A10 encompassing flanking exons/introns. The mutant minigenes include the 

intronic mutation (G>A) alone (with and without 3 UTR), the exonic mutation (C>T) 

alone, and both intronic and exonic mutations together. The genomic region was 

amplified by PCR and cloned into the mammalian expression vector pCi-neo. We 

transfected constant amounts of our minigene construct in triplicate in HEK293T cells. 

Total RNA was extracted, quantified, normalized and subjected to semi-quantitative RT-

PCR analysis.  

Our splicing data revealed a change in splicing pattern for the intronic mutation 

alone (with and without 3 UTR) (Fig.13B, D) but not for the synonymous exonic 

mutation alone (Fig.13F), suggesting a primary role of the intronic mutation in inducing 

aberrant RNA splicing. Intriguingly, however, splicing was severely disrupted in a 

minigene hosting both exonic and intronic mutations (Fig.13H): the exonic mutation 

alone has no effect but it appears to exacerbate the effect of intronic mutation, thus 

having an additive effect on aberrant pre-mRNA splicing. RT-PCR quantification of 

RNA splicing isoforms showed that mutant SLC25A10 promotes a shift toward shorter 

splicing isoforms, thus favoring the exclusion of both exon 10 and intron 10, when 

compared with the WT allele (Fig.13I). Our splicing investigation on the paternally-

derived mutant SLC25A10 allele provides a convincing explanation for the absence of 

protein in the patient. 
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3.5 DISCUSSION 

Here, we used our functional minigene splicing assay to explain disease pathology 

in a patient with severe epileptic and progressive encephalopathy. The proband inherited 

3 mutations from his parents including 1 from his mother and 2 from his father. The 

maternal-derived mutation introduces a stop codon in exon 3, while parental-derived 

mutations are located in exon 9 and intron 10. Although the exonic mutation is a 

synonymous mutation, the patient had very low levels of SLC25A10 mRNA and was 

devoid of protein. Using minigene splicing assays, we showed that the mutant DNA 

promotes a shift toward shorter splicing isoforms, thus favoring the exclusion of 

SLC25A10 exon 10 and intron 10, when compared with the wild-type (Fig. 13H, I). The 

RNA quantitative change was also observed in other minigene hosting the intronic 

mutation alone (Fig. 13B, D), but not in minigene hosting the synonymous mutation 

alone (Fig. 13F), however, the effect of exonic mutation exacerbate the effect of intronic 

mutation, suggesting a primary role of the intronic mutation in inducing the aberrant 

RNA splicing (Fig. 13H). Our work underlies the importance of splicing in 

neurodegenerative disorders and proposes a molecular mechanism that explains disease 

pathology. 

3.6 CONCLUSIONS AND PERSPECTIVES 

In summary, we report first SLC25A10 recessive disease-causing mutations 

associated with abnormal splicing. Albeit additional SLC25A10 mutations in unrelated 

individuals will be required as standard proof of causality. Further work is warranted to 

exploit the SLC25A10-mediated molecular mechanisms that protect cellular respiration 
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and redox state. An interesting future project would be do design antisense 

oligonucleotides to restore the expression of correct isoform of SLC25A10. 
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3.7 TABLES AND FIGURES 

3.7.1 TABLES 

Table 8. List of all the forward and reverse primers used to clone SLC25A10 
minigene constructs used in this study 

 

 
  

SLC25A10_E9F1_XhoI ACAGTGCTCGAGGCCGCTGGTGACGAGC
SLC25A10_E11R1_XbaI ACAGTGTCTAGAGGATGGCACTTTGATGCCAAAG
SLC25A10_E9F1_XhoI ACAGTGCTCGAGGCCGCTGGTGACGAGC
SLC25A10_E11R2_XbaI ACAGTGTCTAGACCTCGATGGAAAGTGCTGGAAGAT
SLC25A10_I8F1 TAGGAGTCAGGTGGAGGTTCTGG
SLC25A10_E10R1_XbaI ACAGTGTCTAGACTTGTAAAAGGCCAGAGGCCC
SLC25A10_I8F2 TAAGTGGCCGGCATGGCTA
SLC25A10_E11R1_XbaI ACAGTGTCTAGAGGATGGCACTTTGATGCCAAAG
SLC25A10_E8F1_XhoI ACAGTGCTCGAGCTGTCCTGCTACGACCAGG
SLC25A10_E10R1_XbaI ACAGTGTCTAGACTTGTAAAAGGCCAGAGGCCC

Primer Sequence

SLC25A10  600 nt minigene

SLC25A10  2131 nt minigene

SLC25A10  2320 nt minigene

SLC25A10  2489  nt minigene

Construct Name

SLC25A10  244 nt minigene

Forward(F)/Reverse(R) Promers
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3.7.2 FIGURES AND FIGURE LEGENDS 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. A functional splicing analysis for SLC25A10 minigenes. 

(A, C, E, G) Schematic representations of the minigene constructs; minigenes are named 
based on the number of nucleotides (nt) (blue box: coding sequence with exon number; 
gray: 3’UTR), along with the sequence identity of the cloned DNA (WT: wild-type; Mut: 
mutant). (B, D, F, H) RT-PCR analysis of total RNA extracted from HEK293T cells 
transfected with specific minigenes in triplicate. The intronic mutants without (B) and 
with 3’ UTR (D) promote a small change in splicing by excluding intron 10 (I10) when 
compared to WT minigene. However, the minigene hosting the intronic and exonic 
mutations together (G) severely disrupt the splicing program (H). (I) Ratio analysis 
between the splicing fragments from figure H shows a significant reduction of I10, E11 
(exon11), and E10 (exon10)-I10. Actin served as experimental control (H). No difference 
is observed in the two minigenes hosting the synonymous mutation (C>T) alone (F). (J) 
Table representing splicing activity of all the different combination of exonic and intronic 
mutant minigenes. Splicing is severely affected when both intronic and exonic mutations 
are present in the minigene. Data are presented as mean+SEM of at least three 
experiments; ***: non parametric Wilcoxon test P-value<0.05.(minigene cartoons are not 
drawn to scale). 
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