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ABSTRACT 

DESIGN AND SYNTHESIS OF NON-XANTHONE STRUCTURAL ANALOGS 
OF α-MANGOSTIN 

Maryam Foroozmehr 

α-Mangostin belongs to a class of polyphenolic compounds called xanthones. The 

potential pharmacological effects such as anti-bacterial and anti-cancer effects of α-

mangostin have made it an important natural product for medicinal chemistry evaluation. 

During this thesis research, we have designed and synthesized a series of non-xanthone 

analogs of α-mangostin for medicinal chemistry evaluation. A commercially available 

starting material, methyl-4-methoxysalicylate was used to synthesize these non-xanthone 

analogs. The analogs were designed as more flexible derivatives compared to the tricyclic 

motif within α-mangostin yet retain the hydroxybenzoate scaffold. Through a one-pot 

chemical synthesis, with relatively high yield (70%), we prepared eight different benzyl-

ether analogs. The benzyl-ether scaffolds contained various substituents at the 4-positon 

of the aryl ring, and we evaluated the effect of these substituents on the antibacterial 

activity. Moreover, the alkylation chemistry we have utilized is very simple to do and 

suitable for the large-scale preparation of these analogs. The chemical approach reported 

here can be extended to incorporate various benzyl and alkyl motifs at the 2-position of 

the methyl-4-methoxysalicylate core for elaborate medicinal chemistry efforts. Our initial 

antibacterial activity evaluation of selected derivatives from this series showed no 

activity at 100 µM concentration against S. aureus and S. epidermidis strains. Our future 

plan is to evaluate the antibacterial activity of these analogs against a larger panel of 

bacteria. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Chemistry of xanthones: 

Xanthones are an important class of oxygenated heterocycles and are known to exhibit a 

broad range of biological activities1. Many naturally occurring xanthones have been 

identified and characterized to date1. Their structural diversity and pharmacological 

importance have made xanthones an important class of molecules for drug discovery. As 

a result, a number of different synthetic xanthone derivatives have been reported in the 

literature2. The xanthone scaffold is made up of a γ-pyran moiety in the middle, fused 

with two benzene rings3. There are different numbering methods for the basic xanthone 

carbon skeleton in the literature, but the IUPAC provisional recommendations of 2004 

for this tricyclic ring is based on a biosynthetic convention in which carbons 1-4 are 

devoted to ring B (acetate-derived ring) and the carbons 5-8 are assigned to ring A 

(shikimate-derived), (Figure 1)4. 

 

Figure 1. Structure of a xanthone core and IUPAC numbering of the scaffold. 

1.2 Classification of xanthones: 

Naturally occurring xanthones are classified into six different groups based on their 

substituents2. The most abundant naturally occurring xanthones are prenylated (60%) 

followed by simple (25%) and glycosylated (11%) xanthones. 
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1. Simple oxygenated xanthone 

2. Xanthone glycosides 

3. Prenylated xanthone 

4. Bisxanthones 

5. Xantholignoids 

6. Miscellaneous xanthones 

1.2.1 Simple oxygenated xanthone: 

The substituents simply include hydroxyl, methoxy or methyl groups which depending on 

the level of the oxygenation could be subdivided in other groups like mono, di, tri, tetra, 

penta or hexa oxygenated. As per figure 2, 2-hydroxyxanthone and 2-hydroxy- 1-

methoxyxanthone are two examples. 

O

O
HO

O

HO
O O

1 2  
Figure 2. Structures of oxygenated xanthones. 

The reported biological activities exclusively related to this group of xanthones include a 

wide variety of effects. Two of the compounds with their known pharmacological effects 

are trihydroxy xanthone with antibacterial activity 5 and polyhydroxy6 and methyl7 

substituent xanthones with antimycobacterial activity, also other pharmacological 

activities attributed to this group are antimalarial8, antifungal5, CNS-depressant9, anti-

convulsant/antiepileptics10, analgesics11, antihypertensive12, anticoagulant13, anti-

asthmatic14, hepatoprotective15, antidiabetics16, anti-inflammatory17, antiallergics14 and 

antianaphylactics18. 
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This group of xanthones target a wide variety of enzymes, having very different effects 

on them, including inhibitory effect on: acetylcholinesterase19, cyclooxygenases (COXs) 

through COX-2 gene expression inhibition20, cyclic AMP-phosphodiesterase 21, cyclic 

GMP-phosphodiesterase18, lipoxygenase20, nitric oxide synthase22, aspartic23, 

topoisomerases I and II24, competitive reversible selective inhibition of monoamine 

oxidase A and B25, competitive inhibition of MMLV26 and non-competitive inhibition of 

hypoxantine-xanthine oxidase27. 

Oxygenated xanthones extracted from Swertia chirata showed them decreasing the 

activity of Catalase28,  superoxide dismutase29 and glutamic acid decarboxylase9.  

Also, this group of xanthones isolated from Swertia chirata enhanced the activity of 

glutathione-S-transferase and glutathione peroxidase28. 

Tetra-oxygenated derivatives isolated from Tripterospermum lanceolatum showed them 

inhibitory activity toward Angiotensin-I-Converting Enzyme30, phospholipase C 27and 

increasing effect on the release of lactate dehydrogenase31. Another effect attributed to 

this group is the activation of protein kinase C32. 

Oxygenated xanthones modulate some other cellular systems as well. For instance, 

tetraoxygenated xanthones can block the calcium channels33 and other types of 

oxygenated xanthones showed complexation with heme in hemoglobin34, inhibition of 

proliferation of lymphocytes35 and inhibition of human complement system36. 

Moreover, oxygenated xanthones are among the naturally occurring xanthones with anti-

tumor activity35. They do it through six various pathways: DNA binding, DNA synthesis 

suppression, modulation of protein kinase C, post-replication repair interference, 
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topoisomerases I and II inhibition. Also, tetraoxygenated xanthones inhibit phospholipase 

C37. 

1.2.2 Xanthone glycosides: 

Xanthone glycosides have a sugar moiety attached to the main tricyclic structure. There 

are two types of xanthone glycosides: C-glycoside, where the sugar is attached to the 

main structure by C-C bond, and O-glycoside where its linkage is through C-O-C bond. 

Most of the xanthone glycosides are O-glycoside type. Examples include mangiferin (3) 

and isomangiferin as the most common C-glycosides, and gentioside (4) as O-glycosides. 

OOO
O

O
OOH

OH
OH

HO

O
HO

HO
OH

4

O OH

OH
O

HO

O

OH
OH

HO

HO

3
 

Figure 3. Structures of two representative xanthone glycosides. 

The biological activities attributed to this group includes: antiparasitic38, antiviral39, 

antiretroviral40, CNS-depressant41, CNS-stimulant42, analgesics43, antilipemic44, 

antiplatelet-anticoagulants45, hepatoprotective46, antidiabetics47, anti-inflammatory48, 

antiallergics38 and immunomodulator49. 

The enzyme system modulatory effects the xanthone glycosides contain are inhibitory 

activity toward: Aldose reductase50, cyclooxygenase51, α-glucosidase37, creatine kinase47a 

and competitive inhibition toward isomaltase and sucrase52, reductase53 plus competitive 

reversible selective inhibition toward monoamine oxidase A and B54, inhibition of gene 
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expression toward nitric oxide synthase55, also has decreased the activity of superoxide 

dismutase47a. 

Xanthones with glycosyl substitution have been shown to affect two different cellular 

systems. First, activation of proliferation of lymphocytes56 and second, inhibition of 

phagocytic activity of macrophages, controlling the expression of genes for primary 

inflammation mediators48, 55. 

Glycosylated xanthones are among the xanthones with anti-cancer activity57. They go 

through different pathways such as transforming growth factor-β (TGF-β) gene 

expression, increasing and apoptosis induction via active caspase 3 pathways. 

1.2.3 Prenylated xanthone: 

In this group of xanthones a 5-carbon unit is attached as substituent to the xanthone core. 

Allanxanthone-A with two isoprenyl groups in positions 2 and 4 is shown below as an 

example of this kind (Figure 4). 

O OH

OHO

OH

2

4

5  

Figure 4. Structure of prenylated xanthone. 

Different biological activities of members in this group have been proven, including: 

antibacterial58, antimalarial59, antifungal23, antiretroviral60, CNS- depressant61, 

neurological disorders62, antiplatelet-anticoagulant63 and anti-inflammatory61 effects. 
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Prenylated xanthones have different effects on a vast number of enzymes. Some good 

examples are inhibition of acetylcholinesterase37, cyclooxygenases64, cyclic-AMP- 

phosphodiesterases65, calcium dependent protein kinase66, myosin light chain kinase66, 

Aspartic23, HIV-1 protease67, sphingomyelinases68, topoisomerases I and II37 and non-

competitive inhibition of: calcium ATP-ase57, cyclic-AMP-binding phosphatase66, and 

competitive inhibition of: protein kinase C66, cyclic AMP dependent protein kinase66. 

This type of xanthone other than inhibitory effect against above-mentioned enzymes can 

activate caspase-369 and caspase-970 enzymes. 

Prenylated xanthones have modulatory effects on P-glycoprotein71 and block the 

prostaglandins D2, E1, E264, and act as antagonist toward three different receptors: 5HT 

2A72, histamine H173 and platelet activity factor63. 

Prenylated xanthones have anti-cancer activities74 and do it through seven different 

pathways: apoptosis induction via active caspase 3 pathways, modulation of protein 

kinase C and A and mitogen-activated protein kinase, prostaglandin E2 receptors 

blocking, sphingomyelinases inhibition and topoisomerases I and II inhibition37.  

1.2.4 Bisxanthones: 

This group of xanthones have dimeric structures. The first of this kind was extracted from 

a plant, and a total of 12 different kinds of bisxanthones have been isolated. 

Globulixanthone E (6) and Ploiarixanthone (7) are two examples of this kind (Figure 5). 
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Figure 5. Structures of select bis-xanthones. 

The known biological effects of this group of xanthones are antimycobacterial, 

antimalarial75, antihypertensive and antiplatelet-anticoagulant activity76. 

The dimers affect different enzymes in different ways including: decreasing the activity 

of catalase and superoxide dismutase28 and enhancing the activity of glutathione 

peroxidase and glutathione-S-transferase28. 

1.2.5 Xantholignoids: 

This group makes one of the important types of xanthones and are thought to be 

biosynthesized by coupling of cinnamoyl alcohol with an O-hydroxyxanthone. Below 

you can find some examples of this group of xanthones which are named as Kielcorin, 6-

methylkielcorin, Hypericorin, and Cadensin C (Figure 6). 

O

OR1

R2
O

O

HO

R3

OR4
OR5

O

(a) R1 = R2 = R3 = R4 = H, R5 = Me, Kielcorin
(b) R1 = R3 = R4 = H, R2 = R5 = Me, 6-Methylkielcorin
(c) R1 = OH, R2 = R4 = H, R3 = OMe, R5 = Me, Hypericorin
(d) R1 = R2 = R4 = H, R3 = OMe, R5 = Me, Cadensin C

8  
Figure 6. Structures of select xantholignoids. 
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The reported biological activity related to xantholignoids is just hepatoprotectivity15. 

Also there are two enzymes affected by this group of xanthones in the literature including 

protein kinase C77 and topoisomerases I and II24 which are inhibited by this group and 

results in its anti-cancer activity37. 

This group of xanthones have shown inhibition of proliferation of lymphocytes78. 

1.2.6 Miscellaneous xanthones: 

Other types of xanthones with any substituent other than the above-mentioned substituent 

is included in this group. There are different examples including: xanthopterin, 

xantholiptin, and xanthofulvin (9) and vinaxanthone (10) (Figure 7). 

O

OH

OH

O OH
O

O

O

O

HO

O

HO
OH

HO O

O OH

OH

OH

O

O

O
HO O

HO

HO

9 10

O

 
Figure 7. Structures of two different natural xanthones, containing a flavone moiety. 

Almost all the above-mentioned biological activities for other groups can be included 

here for different substituents in miscellaneous group. Some of the most common 

activities are antiosteoprotics effects for propoxy/ipriflavone analogs79,  antiretroviral 

effects for flavone-xanthones67,  antiviral80 and antifungal81 effects for furano-xanthones. 

Xanthone flavones have shown inhibitory activity toward DNA- polymerases82 and 

human DNA ligase I83 and competitive inhibition toward HIV-184. Also furano-xanthones 
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have shown inhibition of topoisomerases I and II37. Xanthone- anthraquinone has shown 

inhibitory activity toward steroid 11-β-hydroxylase85 which lead to their anti-cancer 

activity. On the other hand, xanthones substituted with chloro, bromo and alkyl have 

shown competitive reversible selective inhibition toward monoamine oxidase A and B86. 

Different xanthones in this group have different effects on cellular systems such as 

xanthones with carboxy and tetrazole substituents which are binding to albumin87 or 

xanthones with nitro substituents which make complexation with heme in hemoglobin88. 

Xanthones in this group with epoxy substituent have shown good anti-cancer activity. 

They go through different pathways such as DNA synthesis suppression, protein 

synthesis suppression, RNA synthesis suppression and signal transduction inhibition in 

Ha-ras oncogene37.  

From a chemical point of view, there are rules for the molecular structure of a compound 

such as: less than 500 Da of molecular weight, less than 5 and 10 hydrogen bond donors 

and hydrogen bond acceptors respectively and a less than 5 partition coefficient (log P)89 

, which make a compound as a promising drug-candidate. Most xanthones follow all 

these criteria and frameworks, but exactly how each of these structures produce each 

specific above-mentioned pharmacological effect is a complex discussion above this 

study. However, in the following sections (1.4-1.6), the relationship between the 

chemical structure and two specific attributed pharmacological effects of a particular type 

of xanthone (α-mangostin) that has been considered in this study will be discussed in 

detail.   
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1.2.7 Isolation of xanthones: 

The distribution of each class of xanthones in different plants genera is shown in figure 

81. As expected, simple xanthones can be found in all important families since they are 

considered to be the precursor of all other classes of xanthones. The Clusiaceae family 

(mainly represented by Garcinia) is the most important source of prenylated xanthones 

while xanthone glycosides are mostly found in Gentianaceae family (represented by 

Swertia and Gentianella genera). 

 
Figure 8. Heatmap for the distribution of different xanthone classes by genera (2012-
2019). 

[Figure adapted from: Klein-Júnior, L. C.; Campos, A.; Niero, R.; Corrêa, R.; Vander 
Heyden, Y.; Filho, V. C., Xanthones and Cancer: from Natural Sources to Mechanisms of 
Action. Chemistry & biodiversity 2020, 17 (2), e1900499.] 

 

Among all the pharmacological properties of xanthones, in this study the anti-bacterial 

and anti-cancer properties of the synthesized analogs are planned to be surveyed. 

Consequently, herein we would clarify the relationship between the structure and the 

biological activity of natural and previously made xanthone compounds specifically in 

these two medical conditions. 
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1.3 Natural xanthones from mangosteen fruit: 

Mangosteen (Garcinia mangostana) is an evergreen, slow growing tropical tree from the 

Clusiaceae family, indigenous to southeast Asia but can be found in various tropical 

regions around the world too. Most of its long-lasting fame is due to its exotic fruit and 

the variety of medicinal properties it has. The deep purple colored pericarp of 

mangosteen fruit is the abundant source of a class of polyphenolic compounds called 

xanthones, largely responsible for its biological activities and health promoting 

properties90. The pharmacological properties of xanthones and their derivatives consist of 

a diverse range including anti-cancer, anti-oxidant, anti-bacterial, anti-fungal, anti-

inflammatory, anti-malarial, anti-HIV and anti-convulsant activities plus inhibitory effect 

on a wide range of enzymes including acetylcholinesterase (AChE) and 

butyrylcholinesterase (BChE) which have therapeutic potential in the field of 

Alzheimer’s disease91, α-glucosidase with the potential of treatment of many diseases 

including diabetes mellitus type II92, in addition to inhibitory effect on some other 

enzymes like topoisomerase, protein kinase and aromatase3. Moreover, some benefits of 

xanthones in cardiovascular diseases have been shown4. Between 2012 and 2019 a total 

number of 1225 xanthones was isolated from different plants, and 48% of those were 

found in Clusiaceae family93. More specifically more than 60 of them have been 

identified exclusively in mangosteen94. To isolate these compounds classical methods 

like column chromatography has been used and the structure determination has been 

achieved using MS and NMR methods93. The most abundant type of xanthone has been 

identified in mangosteen fruit is α-mangostin (Figure 9) , which is one the most studied 
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xanthones with many proved pharmacological efficacies considerably the most cancer-

preventive potency among other xanthones90.  

O OH

OHO

HO

O 1

2

3
45

6

8

11  

Figure 9. Structure of α-mangostin. 

Isolation of α-mangostin from natural resources is not trivial due to solubility problems 

and low yield95. Hence, there is a limited structure-activity relationship knowledge 

available in the literature. One of the ways to better understand the biological profiles of 

α-mangostin is through chemical synthesis of analogs, with simpler structure. 

1.4 Anti-cancer activity of α-mangostin: 

Today, cancer is the leading cause of death among the societies and more importantly, its 

main cause is the poor treatment. There are three different cancer treatment approaches:  

surgery, radiotherapy, and chemotherapy. The anti-cancer drugs have low selectivity and 

high toxicity which recommend the necessity of production of new chemotherapeutic 

agents with high selectivity and low toxicity95. However, one of the promising ways, is 

dietary chemoprevention by using naturally occurring phytochemicals like xanthones 

with proved anti-cancer activity and apparent safety90. These secondary metabolites have 

shown selectivity for cancer cells with minimal damage to normal cells and that is why 

they have attracted medicinal chemists’ attention as candidates for a new and safe anti-

cancer drug93. 
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α-Mangostin, which is the most potent xanthone against prostate, breast, lung, and 

colorectal cancer90 has shown inhibitory activity through various mechanisms of action96. 

The in-vivo and in-vitro studies have revealed that it acts against cancer cells through 

inhibition of proliferation, inducing apoptosis and cell cycle arrest, modulating phase I 

and phase II enzymes, especially downregulation cyclins/cyclin dependent kinases 

(CDKs) and also has blocking effect on the invasion and metastasis of various cancers 

which demonstrates its potential as suppressing agent in relation to promotion and 

progression of cancer i.e. reducing the growth of tumor93, 97. 

Several studies have been reported to describe the medicinal chemistry and different 

derivatives of α-mangostin for cancer treatment98. Due to the low water solubility of α-

mangostin, inserting some polar groups to its basic structure can increase its 

hydrophilicity and anti-cancer properties. Based on the Fei et al. efforts a series of α-

mangostin analogs have been synthesized and examined on five human cancer cell lines 

which several of those showed promising cytotoxicity activities against all the cell lines 

in µM quantities. Among those the most potent analog with several times more 

hydrophilicity compared to α-mangostin was the one with chloro group at C4 and phenol 

groups at C3 and C6 (Figure 10). The structure activity relationship of this compound and 

the other synthesized compounds showed that the presence of phenol groups on C3 and 

C6 are critical for inhibition of cancer cells and the C4 modification can increase the 

activity and drug-like properties. To synthesize analogs in this study α-mangostin has 

been used as starting material99. 
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Figure 10. Substituted α-mangostin. 

Some other studies suggested that the hydroxyl groups on isoprenyl side chains can 

decrease the anti-cancer activity of α-mangostin, while the xanthones containing 

tetraoxygen groups in their structure in addition to the isoprenyl side chains on ring A 

and B have the most anti-cancer activity90, 100. 

Yuanita et al. conducted a QSAR study on xanthones to find their active sites and design 

molecules with highly predicted anti-cancer activity. Based on this research, the most 

influential positions for anti-cancer activity are C1, C5, C6, C10 and C11 (Figure 11). 

QSAR equations suggest that the more negative the atomic net charge of C5 and C6, and 

the more positive the atomic net charge of C1, C10 and C11, the lower log IC50 (The half 

maximal inhibitory concentration) and the higher anti-cancer potency. So to achieve this, 

C5 and C6 or their neighbors are better to be occupied with electron donating groups like 

hydroxyl or methoxy to make them more nucleophile groups and other positions 

including C1, C10 and C11 are better to be occupied with electron withdrawing groups 

like halogens and nitro group to remove the electron density from the П-system95. 
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Figure 11. Influential positions for anti-cancer activity. 

 It also has been proven in some other literatures, that xanthones with bromo and chloro 

substituents were the most potent inhibitors of topoisomerase II, having lower IC50  

compared to doxorubicin, a commercially available anti-cancer drug101. 

Among all the xanthone derivatives, one of the analogs with much attention as anti-

cancer with remarkable effect is 5,6-dimethylxanthone‐4‐acetic acid (DMXAA) (Figure 

12) which is from the carboxyxanthone family and is now in the phase III of clinical 

trial102. 

The regular synthesis method for DMXAA involves six steps starting with 2,3 

dimethylaniline which undergo a heterogeneous reaction to form an isonitrosoacetanilide 

with an overall 11% yield103. 

Some efforts have been made during these years to find easier ways for this synthesis 

with higher yield. Yang et al. found a four step method with >50% yield104. 

 

 

Figure 12. Structure of DMXAA. 
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1.5 Anti-bacterial activity of α-mangostin: 

Antibiotic-resistance is one of the most threatening dangers for human health. There are 

some reports about the resistance of some Gram-positive bacteria like methicillin-

resistant Staphylococcus aureus (MRSA) to different anti-biotics such as β-lactams 

(oxacillin and ampicillin), vancomycin, fluoroquinolones, linezolid and daptomycin 

which previously had been treated with these antibiotics. The result is more morbidity 

and increased cost for healthcare. As a result, there is an urgent need for some new drugs 

to fight against multi-drug resistant pathogens105. 

α-Mangostin has demonstrated promising anti-bacterial effects. It has been proposed to 

target the cytoplasmic membrane of Gram-positive bacteria such as MRSA. Also, it has 

shown some promising advantages like low minimum inhibitory concentration, fast 

bactericidal effect, and like some other naturally occurring antimicrobial peptides, lower 

risk of development of resistance106. Nevertheless, due to the hydrophobicity it is not 

selective toward prokaryotic cells. In other words, it cannot differentiate the mammalian 

cells from bacteria, and it exhibits adverse toxicity. So, there is an interest in developing 

new α-mangostin analogs with membrane selectivity105. 

Zou et al. worked on some analogs by incorporating cationic substituents with different 

pKa on the xanthone scaffold, to make these molecules more amphiphilic and such 

strategy improved selectivity for bacterial membrane over mammalian cell. The 

electrostatic interactions cause the attraction between the incorporated cationic groups 

and the anionic phospholipid head groups in bacterial membrane. Compound AM-0016 

(Figure 13) has shown the most potency as bactericidal over a range of Gram-positive 

bacteria including MRSA with improved selectivity and no antibiotic resistance105. 
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Figure 13. Structure of compound AM-0016.  

Due to the disappointing toxicity of the compounds made by Zou et al., more efforts have 

been focused on the synthesis of new compounds with same potency but reduced 

toxicity3. Among those the most successful examples include two compounds made by 

Koh et al in 2015. By using the hydrophobic core of α-mangostin and substituting 

lipophilic chains at C2 and C8, cationic amino acids at C3, produced potent anti-

microbials effective against MRSA and VRE, with high selectivity, rapid kill, no 

antibiotic resistance, and low toxicity. They also distinguished three important structural 

components. First the need of a bis- or tri-cyclic rigid hydrophobic core. The small size 

of the molecule and the conformationally constrained structure may enhance the 

penetration into the Gram-positive membranes. Second, the cationic moieties which 

afford the electrostatic interactions with bacterial membrane and provide the selectivity 

over mammalian cells. Third, a lipophilic chain such as isoprenyl group or its reduced 

form provide the sufficient driving force to penetrate the cytoplasmic membrane of 

bacteria107. 

Later, the same research group tried to make some more potent analogs with higher 

selectivity and less hemolytic activity. They designed and synthesized 46 different new 

compounds inspired by the nonpeptidic xanthone structures, and then divided them into 

four groups based on spacer length, cationic moieties, lipophilic chains, and tri-arm 
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functionalization to evaluate their anti-microbial properties. Among those one of them 

(Figure 14) with two primary amine groups showed the highest potency, acceptable 

selectivity and less hemolytic activity108.  

 
Figure 14. Structure of primary amine-conjugated. 

Different strategies have been followed in this study to synthesize the compounds. But 

the starting material in all of them was α-mangostin or using condensation of 2,4-

dihydroxylbenzoic acid and phloroglucinol in the presence of Eaton’s reagent. The yields 

vary between 34% to 95%. 

1.6 Chalcones: Structural mimics of xanthones: 

In 2016 Cai et al. supported by their previous successful studies on the anti-diabetic and 

α-glucosidase inhibitory effects of xanthones stated that, the key factors responsible for 

the inhibitory effects of xanthones are H-bond, extended П-system, and the flexibility of 

its structure. Further, they hypothesized that chalcones (Figure 15) as analogs of 

xanthones can possess better inhibitory effects due to the flexibility of their structural 

framework. It was proven by making twenty-six chalcones and bis-chalcones which those 

with hydroxyl substituents showed better inhibitory activity against α-glucosidase 

enzyme. The structure activity relationship suggests that the number and the place of the 

hydroxyl groups affect inhibitory activity by acting as hydrogen bonding donor in 

relation to the enzyme109. 
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Figure 15. Structure of chalcones and bis-chalcones. 

Chalcones also known as α,β-unsaturated ketones are an important naturally occurring 

compounds belong to the flavonoid family. They exhibit many different pharmacological 

and beneficial effects including anti-cancer and anti-bacterial effects109-110. As it is shown 

in figure 15, their structure consists of two aromatic rings connected to each other by 

three-carbon α,β-unsaturated carbonyl bridge. They can be synthesized both naturally in 

plants and synthetically in the laboratory and are a preferred starting material to 

synthesize other polycyclic aromatic compounds. That is why methods to synthesize 

them is among popular research objectives. The most common method used to synthesize 

them in the lab is aldol condensation of substituted acetophenones with proper substituted 

benzaldehydes in the presence of a base, mainly sodium or potassium hydroxide. Despite 

having good efficacy of this method, still there are some drawbacks like the need for the 

protection of hydroxyl groups before the reaction, the need for analyzing the acidity of 

the acetophenone hydrogen α, and obtaining biproducts if the bases are good nucleophilic 

agents. As a result still different research groups are working to find some new ways to 

synthesize these products to overcome the previous drawbacks111. 

1.7 Chemical synthesis of α-mangostin analogs: 

Different synthetic approaches available to make analogs of α-mangostin are driven by 

three main perspectives aiming to overcome its structural drawbacks which are high 
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hydrophobicity, low selectivity, and low bioavailability. These three approaches target 

three different parts of its structure (Figure 9): reactions involving modifications of 

hydroxy groups (C1, C3 and C6 positions), reactions of aromatic electrophilic 

substitution (C4 and C5 positions) and modification of prenyl moieties (C2 and C8 

positions)112. 

1.7.1 Modifications of hydroxy groups: 

This is the most popular way to make α-mangostin analogs. The reactivity of hydroxyl 

group at C1 position is less than C3 and C6 due to the possible intermolecular hydrogen 

bond between the OH group at C1 and the carbonyl group at C8. So, by making milder 

reaction conditions or harsher ones it is possible to control the happening of the reaction 

at C3 and C6 positions only, or at all C1, C3 and C6 positions. As it is shown on Scheme 

1, compounds 18 and 19 are made by reacting the α-mangostin with carbamoyl chlorides. 

The compound 20 with C3-monoamide is synthesized through the intermediate 

compound C6-allyl ether which is removed after the reaction with Et2NCOCl. Also 

compounds 21 and 22 Show some analogs with ethers at C3 and C6 containing amino 

groups and heterocyclic fragments. Also, compounds 26 and 27 are examples of tri-ether 

which are achieved by reacting the α-mangostin with an excess of 1,4-di-iodobutane113. 
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Scheme 1. Modifications of hydroxy groups of α-mangostin. 

[Scheme adapted from: Buravlev, E. V., Synthesis of new derivatives of α-mangostin 
(micro review). Chemistry of Heterocyclic Compounds 2019.] 
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1.7.2. Reactions of aromatic electrophilic substitution: 

One of the common reactions in this group is SEAr reactions which substitute a halogen 

atom at C4 position by using N-Bromosuccinimide or NBS and NCS99 or N-

Chlorosuccinimide (Not shown in scheme 2). More recent studies suggested a Mannich 

reaction in which aminomethyl groups, including heterocyclic fragments, are introduced 

at C4 and then at C5 positions113-114(Scheme 2). 

-mangostin

HCHO, R1R2NH(1.1 equiv)
PhH, , 30-75 min, 24-94%

                    or
CH2(NMe2)2 (1.1 equiv)
PhH, rt, 45min, 73%

HCHO, R3R4NH (2.5 equiv),
PhH,, 4h, 80-82%, 
or CH2(NMe2)2 (2.2 equiv)
PhH, rt, 2h, then , 45min, 81%

or HCHO, morpholine (1.1 equiv)
PhH, , 1.5h, then HCHO, azepane (1.5 equiv),
 PhH, , 45min, 79%

OHO

O
O

R2R1N

OH

OH

4

OHO

O
O

R6R5N R4R3N

OH

OH

28

29

NR1R2 = pyrrolidin-1-yl, piperidin-1-yl, azepan-1-yl, (thio)morpholin-4-yl, NMe2, NHBu
NR3R4 =NR5R6 = morpholin-4-yl, azepan-1-yl, NMe2
NR3R4 = morpholin-4-yl, NR5R6 = azepan-1-yl
NR3R4 =NHBu, NR5R6 = NMe2

7 examples

5 examples

5 4

 

Scheme 2. Reactions of aromatic electrophilic substitution on α-mangostin. 

[Scheme adapted from: Buravlev, E. V., Synthesis of new derivatives of α-mangostin 
(micro review). Chemistry of Heterocyclic Compounds 2019.] 
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1.7.3 Modification of prenyl moieties: 

A common reaction in this group is hydrogenation of the double bonds of the prenyl 

groups at C2 and C8 positions by using Pd/C as a catalyst and other conditions slightly 

different in different studies, yielding a molecule with isopentyl substituents (30)99, 108, 112. 

Compounds (31-36) are afforded through oxidation reactions; depending on the oxidizing 

agent, different cyclic compounds are made (Scheme 3) 112-113, 115. 

 

Scheme 3. Modification of prenyl moieties on α-mangostin. 

[Scheme adapted from Buravlev, E. V., Synthesis of new derivatives of α-mangostin 
(micro review). Chemistry of Heterocyclic Compounds 2019.] 
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CHAPTER 2. HYPOTHESIS AND DESIGN RATIONALE 
 

Chemical synthesis of α-mangostin analogs that contain a poly-oxygenated xanthone core 

is not trivial due to the complexity of structure. Hence, we hypothesized that structurally 

simpler, non-xanthone compounds that contain part of the α-mangostin scaffold is a 

useful approach to study the SAR (structure-activity relationship) of α-mangostin. Such 

an approach provides a simple and economical entry to this pharmacologically important 

class of natural products. Additionally, such structurally flexible analogs of α-mangostin 

have not been synthesized to date to explore their pharmacological potential.  

α-Mangostin (Figure 9), similar to other xanthones, has a tricyclic planar structure and is 

considered a very hydrophobic compound. Its high hydrophobicity is linked to low 

solubility in aqueous medium and low selectivity in terms of adverse effects. As it has 

been discussed earlier α-mangostin has a broad range of biological activities and possibly 

many different targets.  

Chalcones (Figure 15) as structural mimics of xanthones, although still preserve planar 

structure as xanthone, demonstrated that a tricyclic core is not necessary for 

pharmacological activity.   

Based on this observation, we planned to develop simple chemical methods to generate 

non-xanthone analogs of α-mangostin, where the oxygenated benzoyl motif is preserved, 

and new functional motifs are introduced at the 2-position of the benzoyl motif (Figure 

16). 



25 
 

OOH

HO OH

chalcone

16
O OH

OHO

HO

O 1

2

3
45

6

8

11

O O

O

O

R

(50)

O
O O

O

O

O

NO2

R

(49)

O O

O

O

R

−mangostin

compounds (57-62)

- Designed molecules in this study:

- Pharmacologically effective molecules:

 

Figure 16. Key structural motifs. 

Figure 16, highlights the structural motifs we proposed to include in our design of new 

analogs based on the pharmacophore of α-mangostin and chalcones. By keeping the two 

aryl rings and multiple hydroxyl groups that are important for the inherent 

pharmacological activity of mangostins, we hope that the new analogs will retain a 

reasonable bioactivity.  

Moreover, having ‘non-xanthone’ core provides more flexibility, instead of rigidity, 

which is known to improve a compound’s physiochemical properties and likely the 

ability to bind to a desirable target. In addition, incorporation of substituted aryl rings to 

the ’benzoyl core’ enables us to build a structurally diverse library of analogs and 

evaluate the SAR for the non-xanthone derivative of mangostins.  

To investigate this hypothesis, we proposed two different approaches. 
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First, we envisioned using a commercially available polyphenol (2,4,6-trihydroxybenzoic 

acid) (42) as starting material and performing structure diversification to generate a 

library of synthetic analogs of α-mangostin (Scheme 4). 

 
Scheme 4. Synthetic plan for α-mangostin analogs using 2,4,6-trihydroxybenzoate as 
precursor. 

 

A second approach was designed to synthesize α-mangostin analogs using a 

commercially available methyl-4-methoxysalicylate (44) as a precursor. The plan is to 

develop a simple chemical approach to alkylate compound 44 to generate a series of 

analogs and explore the antibacterial activity potential. 

 

Scheme 5. Synthetic plan for α-mangostin analogs using 4-methoxysalicylate as 

precursor. 

We wanted to explore the effect of structural flexibility on the bioactivity profile and 

physiochemical properties of α-mangostin. Additionally, the phenyl ring of the benzyl 
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ether motif (R group in compound 45) allows us to include different functional groups 

such as polar and non-polar motifs that may further improve the bioactivity profile. 
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CHAPTER 3. EXPERIMENTAL 

 

3.1 Chemistry 

3.1.1 Materials and Instrumentation: 

All chemicals were procured from VWR International (Radnor, PA), Fisher Scientific 

(Hampton, NH), AK Scientific, Inc. (CA), Acros Organics (Geel, Belgium), Aldrich 

Chemical Co. (Milwaukee, WI), Alfa Aesar (Ward Hill, MA), Arkpharm, Inc. (Arlington 

Heights, IL), Chem-Impex Int. Inc. (Wood Dale, IL), and were used without additional 

purification. Qualitative analysis of reactions was performed by thin layer 

chromatography (TLC) with silica gel G as the adsorbent (250 microns) on aluminum 

backed plates (Agela Technologies) and Ultraviolet (UV) light at 254 nm or 365 nm for 

visualization purposes. 1H NMR experiments were performed using a Bruker 400 

UltrashieldTM spectrometer (at 400 MHz) equipped with a z-axis gradient probe. 1H 

NMR chemical shifts were reported in parts per million (δ / ppm) for majority of the 

intermediates and all the target compounds. The 1H NMR data are depicted as: chemical 

shift multiplicity s (singlet), bs (broad singlet), d (doublet), t (triplet), dd (doublet of 

doublets), dt (doublet of triplets), tt (triplet of triplets), m (multiplet), H (number of 

protons) and J (coupling constant). Column chromatography purifications were 

performed using silica gel (40-63 μm) purchased from Silicycle Inc. (Quebec City, 

CANADA). LR-LC/MS analyses were performed on single quadrupole, Agilent 

Technologies 1260 infinity series LC. 
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3.1.2 General procedure for the alkylation reaction: 

Methyl 4-methoxysalicylate (200 mg, 1 equiv.),K2CO3 (3 equiv) and NaI (0.3 equiv) 

were mixed in dimethylformamide (DMF, 25 mL) and allowed to stir at room 

temperature. After 20 minutes of stirring, either alkyl halide derivative (1.5 equiv) or the 

benzyl bromide derivative (1.5 equiv.) was added to the suspension at room temperature 

and continued to stir for 14 hours. TLC analysis after 14 hours showed complete 

consumption of methyl-4-methoxysalicylate. At that point, the crude reaction mixture 

was diluted with water (150 mL). The aqueous layer extracted with ethyl acetate (4 x 

50mL). Combined organic layers were washed with water (3 x 50 mL), 10% NaHCO3 (50 

mL), water (50 mL) and dried over anhydrous Na2SO4, filtered and concentrated in 

vacuo to provide a pale-yellow oily material. The crude product was dissolved in minimal 

amount of ethyl acetate and purified using flash column chromatography (silica gel 

column, 0 to 20% EtOAc in hexanes linear gradient). The appropriate fractions were 

collected and concentrated in vacuo providing the desired product as a colorless oil. 

 

3.1.3 Representative procedure for the synthesis of Alkyl halide derivatives (Scheme 

8): 

O O

OH

O

R
X+

O O

O

O

RNaI, K2CO3, DMF (54) R = CH3, , X = I, Yield : 78%
(55) R = C3H5,  X = Br, Yield : 50%

(44) (53)  
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3.1.4 Characterization data for compounds 54 and 55: 

 

Methyl 2,4-dimethoxy benzoate (54): colorless oil, 78%; 𝐑𝐟: 0.55 (20% 

EtOAc/hexanes). 𝐇𝟏  NMR: (400MHz, CD3OD): δ 3.80 (3H, s), 3.87 (3H, s), 3.92 (3H, 

s), 6.61 (1H, dd, J = 1.5, 0.5 Hz), 6.82 (1H, dd, J = 7.6, 1.5 Hz), 7.80 (1H, dd, J = 7.6, 0.5 

Hz); 𝐂𝟏𝟑 𝐍𝐌𝐑: (100 MHz, CD3OD): δ 55.9, 161.3, 55.5, 52.3, 98.8, 112.1, 133.8, 166.5, 

163.2, 105.9; LC-MS: (ESI, [M+H]+) calculated for [𝐶10𝐻12𝑂4 + 𝐻+] 196.07 observed 

196.0. 

 

2-[(Allyl) oxy]-4-methoxy-methylsalicylate (55): colorless oil, 50%; 𝐑𝐟: 0.60 (20% 

EtOAc/hexanes). 𝐇𝟏  NMR: (400MHz, CD3OD): δ 3.80 (3H, s), 3.88 (3H, s), 4.62 (2H, 

d, J = 8.6 Hz), 4.95-5.08 (2H, dd, J = 16.5, 1.3 Hz), 5.04 (dd, J = 10.7, 1.3 Hz), 6.00 (1H, 

ddt, J = 16.5, 10.7, 8.6 Hz), 6.59 (1H, dd, J = 1.5, 0.5 Hz), 6.83 (1H, dd, J = 7.6, 1.5 Hz), 

7.80 (1H, dd, J = 7.6, 0.5 Hz); 𝐂𝟏𝟑 𝐍𝐌𝐑: (100 MHz, CD3OD): δ 132.9, 52.3, 55.5, 118.1, 

163.2, 159.6, 105.9, 101.4, 166.5; LC-MS: (ESI, [M+H]+) calculated for [𝐶12𝐻14𝑂4 + 

𝐻+] 222.09 observed 222.1. 



31 
 

3.1.5 Representative procedure for the synthesis of Benzyl bromide derivatives 

(Scheme 9): 

O O

O

OH

Br

R

O O

O

O

R

+
NaI, K2CO3, DMF

(44) (56)

(57) R = F
(58) R = CF3
(59) R = H
(60) R = Cl
(61) R = CH3
(62) R = OCF3

70%

 

3.1.6 Characterization data for compounds 57_62: 

 

2-[(4-Fluorobenzyl) oxy]-4-methoxy-methylsalicylate (57): pale yellow oil, 70%; 𝐑𝐟: 

0.45 (20% EtOAc/hexanes). 𝐇𝟏  NMR: (400 MHz,CD3OD): δ 7.81 (1H, dd, J = 7.61, 

0.47 Hz), 7.56 -7.53 (2H, ddd, J = 8.4 1.14 0.55 Hz), 7.1 (2H, ddd, J = 8.4, 1.13, 0.55 

Hz), 6.65 (1H, dd, J = 1.47, 0.47 Hz), 6.59-6.57 (1H, dd, J = 7.61, 1.47 Hz), 5.1 (2H, s), 

3.8 (6H, s); 𝐂 𝐍𝐌𝐑𝟏𝟑 : (100 MHz, CD3OD): δ 164.6, 160.2, 133.3, 128.7, 114.8, 105.4, 

100.2, 69.4, 54.6, 50.7; LC-MS: (ESI, [M+H]+) calculated for [𝐶16𝐻15𝐹𝑂4 + 𝐻+] 290.10 

observed 290.1. 
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2-[(4-Trifluoromethyl) benzyl oxy]-4-methoxy-methylsalicylate (58): colorless oil, 

70%; 𝐑𝐟: 0.32 (20% EtOAc/hexanes). 𝐇𝟏  NMR: (400 MHz,CD3OD): δ 3.83 (3H, s), 

3.88 (3H, s), 5.20 (2H, s), 6.49 (1H, dd, J = 1.5, 0.5 Hz), 6.55 (1H, dd, J = 7.6, 1.5 Hz), 

7.66 (4H, s), 7.90 (1H, dd, J = 7.6, 0.5 Hz). 𝐂 𝐍𝐌𝐑𝟏𝟑 : (100 MHz, CD3OD): δ 165.95, 

164.17, 159.89, 140.7, 134.1, 130.1, 126.8, 125.5, 122.78, 112.86, 105.28, 100.63, 69.68, 

55.52, 51.7; LC-MS: (ESI, [M+H]+) calculated for [𝐶17𝐻15𝐹3𝑂4 + 𝐻+] 340.09 observed 

340.1. 

 

2-benzyloxy-4-methoxy-methylsalicylate (59): colorless oil, 70%; 𝐑𝐟: 0.67 (20% 

EtOAc/hexanes). 𝐇𝟏  NMR: (400 MHz,CD3OD): δ 3.80 (3H, s), 3.87 (3H, s), 5.16 (2H, 

s), 6.50 (1H, dd, J = 1.5, 0.5 Hz), 6.52 (1H, s), 7.25-7.38 (3H, tt), 7.40 (2H, dd, J = 7.8, 

1.3 Hz), 7.87 (1H, dd, J = 7.6, 0.5 Hz). 𝐂 𝐍𝐌𝐑𝟏𝟑 : (100 MHz, CD3OD): δ 166.2, 164.1, 

160.2, 136.6, 133.9, 128.55, 127.7, 126.8, 112.95, 112.9, 105.1, 100.6, 77.0, 70.58, 55.4, 

51.7; LC-MS: (ESI, [M+H]+) calculated for [𝐶16𝐻16𝑂4 + 𝐻+] 272.10 observed 272.1. 
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2-[(4-Chlorobenzyl) oxy]-4-methoxy-methylsalicylate (60): colorless oil,70%; 𝐑𝐟: 0.40 

(20% EtOAc/hexanes). 𝐇𝟏  NMR: (400 MHz, CD3OD): δ 3.81(3H, s), 3.86 (3H, s), 5.10 

(2H, s), 6.48 (1H, dd, J = 1.5, 0.5 Hz), 6.84 (1H, dd, J = 7.5, 1.5 Hz), 7.36 (2H, ddd, J = 

8.3, 1.1, 0.5 Hz), 7.44 (2H, ddd, J = 8.3, 1.4, 0.5 Hz), 7.87 (1H, dd, J = 7.6, 0.5 Hz); 

𝐂 𝐍𝐌𝐑𝟏𝟑 : (100 MHz, CD3OD): δ166.0, 164.12, 160.0, 135.18, 134.01, 133.5, 128.73, 

128.17, 112.89, 105.24, 100.68, 77.0, 76.7, 69.81, 55.5, 51.7; ; LC-MS: (ESI, [M+H]+) 

calculated for [𝐶16𝐻15𝐶𝑙𝑂4 + 𝐻+] 306.07 observed 306.0. 

 

2-[(4-Methylbenzyl) oxy]-4-methoxy-methylsalicylate (61): colorless oil, 70%; 𝐑𝐟: 

0.58 (20% EtOAc/hexanes). 𝐇𝟏  NMR: (400 MHz,CD3OD): δ 2.34 (3H, s), 3.80 (3H, s), 

3.86 (3H, s), 5.11 (2H, s), 6.50 (2H, dd, J = 7.6, 1.5 Hz), 7.19 (2H, dd, J = 7.5, 0.5 Hz), 

7.39 (2H, J = 7.5, 0.5 Hz), 7.87 (1H, dd, J = 7.6, 0.5 Hz); 𝐂 𝐍𝐌𝐑𝟏𝟑 : (100 MHz, CD3OD): 

δ 166.28, 164.0, 160.3, 137.47, 133.88, 133.63, 129.22, 126.91, 112.98, 105.13, 100.69, 

77.37, 77.05, 76.7, 55.46, 51.69, 21.20; LC-MS: (ESI, [M+H]+) calculated for [𝐶17𝐻18𝑂4 

+ 𝐻+] 286.12 observed 286.1. 
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2-[(4-Trifluoromethoxy) benzyl oxy]-4-methoxy-methylsalicylate (62): colorless oil, 

70%; 𝐑𝐟: 0.36 (20% EtOAc/hexanes). 𝐇𝟏  NMR: (400 MHz,CD3OD): δ 3.83 (3H, s), 3.87 

(3H, s), 5.1 (2H, s), 6.50 (1H, dd, J = 1.5, 0.5), 6.54 (1H, dd, H = 7.5, 1.5 Hz), 7.23 (2H, 

dd, J = 7.9, 1.3), 7.58 (2H, dd, J = 7.9, 1.2), 7.91 (1H, dd, J = 7.6, 0.5 Hz); 𝐂 𝐍𝐌𝐑𝟏𝟑 : 

(100 MHz, CD3OD): δ 165.97, 164.16, 160.02, 148.73, 135.39, 134.04, 128.20, 121.09, 

112.89, 105.28, 100.70, 77.34, 77.02, 76.7, 55.51, 51.71; LC-MS: (ESI, [M+H]+) 

calculated for [𝐶17𝐻15𝐹3𝑂5 + 𝐻+] 356.09 observed 356.1. 

3.2 Antibacterial activity evaluation: 

Bacterial strain of choice was first inoculated in 10 mL of LB broth for 16 hours in 

shaker at 37 ˚C. The following day, 100 µL of the inoculum was transferred to a test tube 

with fresh media to obtain an inoculum with an optical density at 600 nm (OD600) of 0.2. 

All compounds were dissolved in DMSO to prepare samples for testing. Drugs were 

prepared as serially diluted concentration of 100, 50, 25, 12.5 and 6.25 µg/mL and 100 

µL was transferred into a 96-well plate. Then 100 µL of inoculum (with OD600 = 0.2) was 

transferred into each well with the test drug. The plate was then incubated at 37 °C for 14 

hours. The OD600 was recorded using microplate reader (ELx808). MICs (Minimum 

inhibitory concentration) are reported as the lowest concentration at which no bacterial 

growth was observed. 
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CHAPTER 4. RESULTS AND DISCUSSION 

 

4.1. Synthesis of α-mangostin analogs based on 2,4,6-trihydroxybenzoic acid: 

Our synthetic approach began with the conversion of 2,4,6- trihydroxybenzoic acid (42) 

to the corresponding acetonide (46) to protect the carboxylic acid and the adjacent 

hydroxyl. The plan is to selectively protect the hydroxyls at 4- and 6-positions with a 

removable protecting group. To achieve this, first the carboxylic acid and the hydroxyl at 

2-position are tied together in one step via an acetonide ring formation. It is well known 

that an acetonide that connects a carboxyl group and a phenol can be converted into the 

methyl ester readily. Based on literature protocol, we examined two different reaction 

conditions to install the acetonide protecting group. One of the methods involved the use 

of  acetone and catalytic amount of 4-dimethylaminopyridine (DMAP) and resulted in a 

slow, low yielding reaction116. Therefore, we shifted to the second approach where 

trifluoroacetic anhydride (TFAA), trifluoroacetic acid (TFA) and acetone 117. The 

acetonide (46) was obtained with an unsatisfactory yield of 39%. Based on TLC analysis, 

we observed that the reaction did not go to completion and unreacted starting material 

remained in the reaction mixture. Then, we increased the equivalences of TFA and TFAA 

from 7.77 and 2.85 to 22 and 8.6, respectively. In addition, the reaction was performed at 

30 ˚C to assess the effect of temperature. The optimized condition provided an improved 

yield to 57% (Scheme 6).  

With the available material, we moved forward to protect the two OH groups in 

compound 46, as either benzyl ether or allyl ether118.  Benzylation reaction did not 

provide the desired product in good yield. We faced difficulties separating the benzyl 

alcohol byproduct from the desired product. The benzyl alcohol was generated when the 
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benzyl bromide reacted with residual water as the reaction mixture was not completely 

anhydrous. On the other hand, allylation was successful and yielded the product in good 

yield (Scheme 6). The suggested mechanism for this reaction involves deprotonation of 

(OH) groups by the base (Cs2CO3) and allylation of the phenoxide motif in the presence 

of allyl bromide. 

Following the allylation, deprotection or methanolysis of compound 47 gave compound 

48 (Scheme 6). The reaction proceeded well in the presence of methanol and potassium 

carbonate, where in situ generated methoxide assisted in the ring opening of acetonide, 

and subsequent conversion of acetonide into the methyl ester derivative 48. Compound 

48 serves as a common precursor for further derivatization at the phenolic oxygen via 

alkylation. The reason for installing the allyl ethers is that after the structure 

diversification of phenolic hydroxyl at 2-position, the allyl ethers can be selectively 

deprotected.  

To make the proposed analogs from compound 48, two different approaches were 

examined. In one approach compound 48 was reacted with 1-fluoro-2,4-dinitrobenzene, 

in the presence of triethylamine (TEA) at room temperature. The goal is to synthesize a 

selection of ‘biaryl-ethers’ via this approach. The deprotonated phenoxide group reacted 

with the fluoro-dintrobenzene via a nucleophilic aromatic substitution reaction. During 

the reaction, a typical Meisenheimer complex is formed, and the fluorine is lost to 

generate the desired ‘biaryl-ether’ product.  

In the second approach, compound 48 was reacted with 4-(trifluoromethyl)benzyl 

bromide in the presence of Cs2CO3 at room temperature. Both of these approaches gave 

the desired products with low yield (< 50%), and we had difficult time isolating the final 
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products in high purity (Scheme 6). The reaction yielded a complex mixture of products 

that were difficult to separate and characterize. We suspect that under the reaction 

condition, the allyl groups may be migrating within compound 48, providing a mixture of 

compounds.  Also, the fluoro-dintrobenzene reagent may be rapidly decomposing to form 

the corresponding phenol-byproduct. Our attempts to change solvents and reaction 

temperature also failed to improve the yield and purity of the product. Since we had 

another key step involved in the synthetic scheme, we were not satisfied with the 

outcome of these two approaches. We also noticed that the yield we obtained for this 

approach is not reproducible. We abandoned our strategy that involved 2,4,6-

trihydroxybenzoic acid as the precursor for the analog synthesis, and decided to move to 

a simpler polyphenol precursor to generate the proposed analogs. 
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Scheme 6. Synthesis of α-mangostin analogs via 2,4,6-Trihydroxybenzoic acid route. 

The reason to abandon our initial approach also relates to the need for excessive amount 

of TFA and TFAA. These reagents are corrosive, and not easy to handle in large 

quantities for large scale synthesis to obtain a reasonable amount of substrate for 

structure diversification. 
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Therefore, we shifted our focus to an alternate approach to make simplified analogs of α-

mangostin using commercially available methyl-4-methoxysalicylate as a precursor (44). 

While compound 44 has structural similarities with α-mangostin, it is structurally 

simpler, and no protecting group manipulation is needed to generate the proposed 

analogs. In this method, we envisioned derivatizing compound 44 using (1) 1-fluoro-2,4-

dinitrobenzenes, (2) alkyl bromides, and (3) benzyl bromides. 

As shown in scheme 7a, we attempted the reaction between 1-fluoro-2,4-dinitrobenzene 

(51) and the phenol precursor (44) to generate a biaryl-ether analog. It was expected that 

this reaction works through a nucleophilic aromatic substitution reaction (Scheme 7b) 

and results in the formation of the desired product. However, the reaction did not proceed 

as expected. Analysis of the reaction by TLC indicated the presence of unreacted phenol 

precursor (44). We suspect that the phenol motif is not accessible due to steric reason and 

perhaps not reactive under the condition tested. Another factor to note is that 1-fluoro-

2,4-dinitrobenzene is not stable under the reaction condition and decomposed to the 

corresponding phenol-derivative as the reaction condition is not 100% anhydrous. Due to 

time constrains we had for this project, we did not further explore other methods to 

generate biaryl-ethers or optimize the reaction condition. We believe that the reaction 

condition may be optimized by using fresh reagents and maintaining an anhydrous 

reaction environment for this type of chemistry. Moreover, elevated temperatures may be 

investigated to force the reaction to go to completion. 



40 
 

 

 

 

Scheme 7. (a) Reaction of methyl-4-methoxysalicylate and 1,4-fluoro nitro benzene 

derivatives (b) Proposed mechanism. 

As another direction, we also tried to alkylate the common precursor (44) with different 

alkyl halides through a nucleophilic substitution reaction (SN2). The methylation 

reaction, using methyl iodide worked well to generate the corresponding methyl ether 

product. Also, the reaction using allyl bromide yielded the product in acceptable yield. 

However, the other alkyl bromides, such as propyl bromide and butyl bromide did not 

provide the desired products, perhaps due to low reactivity of alkyl bromides under the 

tested conditions. Due to limited scope for this reaction, we did not pursue our interest in 

alkyl halides for the generation of this class of methyl-4-methoxysalicylate analogs 

(Scheme 8). 
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Scheme 8. (a) Reaction between methyl-4-methoxysalicylate and alkyl halides (b) 

Proposed mechanism. 

Then, as shown in Scheme 9, we tried the reactivity of phenol precursor (44) with benzyl 

bromide derivatives (56). This approach worked well as one-step process going through 

SN2 mechanism, with good yield at room temperature. The conversion of the precursor to 

the desired products (57-62) occurred in less than 4 hours, with 70-85% yield. Since 

benzyl bromides are more reactive compared to alkyl bromides, the benzylation occurred 

smoothly. Using this strategy, we proceeded to synthesize a series of benzyl-ethers using 

five different benzyl bromides. The benzyl groups contain different substitutions at the 4-

postion of aryl ring (F, CF3, Cl, CH3 and OCF3). The substituents are polar or non-polar 

groups and allow us to study a preliminary structure activity relationship at 4-position. 

Moreover, such substitutions are useful for altering the physicochemical property of a 

molecule. Moreover, by including electron donating or electron withdrawing groups, 

hydrogen bond donors or acceptors, the analogs may exhibit different biological 
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properties. All these compounds were purified using silica column chromatography and 

fully characterized using NMR and LCMS techniques to confirm the structure. 

 

 

Scheme 9. (a) Reaction between methyl-4-methoxysalicylate and benzyl bromide 

derivatives (b) Proposed mechanism. 

Following the successful synthesis of benzyl-ether analogs of methyl-4-

methoxysalicylate, we went ahead and performed a preliminary antibacterial evaluation 

of two of the analogs against both Gram-positive and Gram-negative bacteria. 
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4.2 Characterization for compounds 47 and 61: 

4.2.1 Nuclear Magnetic Resonance (NMR): 

4.2.1.1 H-NMR for compound 47: 
 

(a) 

  

 

(b) 

 

Figure 17. (a) Actual H-NMR for compound 47; (b) Predicted H-NMR for compound 47. 

Since NMR plays an important role in structure determination, we selected two 

compounds we have synthesized to illustrate the process involved in characterization of 
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chemical structure. For compound 47, the expected number of H-NMR signals regardless 

of multiplicity, can be divided into five different groups (Figure 17). Compound 47 does 

not have an element of symmetry; hence, we expect all protons to have distinct chemical 

shift values.  

Group 1: A singlet at 1.7 ppm is observed, representing 6 protons, which represent the 

two methyl groups connected to the same carbon on the acetonide ring.  As these two 

methyl groups are not distinguishable at the NMR timescale, they appear one singlet peak 

on proton NMR spectrum. The chemical shift at 1.7 ppm matches the expected value for 

an aliphatic methyl proton.  

 
(a)                                                                              (b) 

Figure 18. (a) Allyl ether different protons; (b) Allyl ether coupling constants. 

Group 2: There are 2 allyl ethers in this molecule and with four distinct types of protons 

(Figure 18a). Each pair of protons in two allyl ether groups are different from each other. 

The allyl protons in each allyl ether group cannot be identical and each of which is 

coupled with the interior vinyl proton resulting in a doublet. The presented peaks in the 

actual NMR spectrum at 4.5 and 4.6 ppm match with 4 allyl protons in the two allyl ether 

groups. It is possible the more downfield peak at 4.6 ppm be related to the more 

deshielded allyl ether group closer to the electronegative oxygen atom. 
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Group 3: These are two terminal vinyl protons of allyl ether group directly connected to 

the sp2 carbon. Due to the lack of rotation around the П-bond these two protons in each 

allyl ether group couple with each other. As they are magnetically different, they have 

different chemical shift values. Also, each of these terminal vinyl protons couple with the 

interior vinyl proton with a different coupling constant (Figure 18b). So, as each one is 

coupled with 2 other protons what we can predict about the multiplicity is a doublet of 

doublet. In the actual NMR spectrum, the group 3 peaks at 5.6 to 5.2 ppm can be 

attributed to these terminal vinyl protons. The coupling constant between the two 

germinal protons is around 2 Hz and the coupling constant between the interior vinyl 

proton and the trans alkene proton is around 15 Hz. The cis alkene proton has a coupling 

constant value of 10 Hz. Based on the coupling constant values, it is possible that two of 

the middle peaks would have been very close to each other which are not possible to be 

distinguished from each other and that is the reason in the presented NMR spectrum, 6 

peaks are seen instead of 8 peaks within the expected region. 

Group 4: This group can perfectly be attributed to the interior vinyl hydrogen in allyl 

ether group which has a particularly interesting resonance. This hydrogen couples to 

other four hydrogens in the allyl ether group with three different coupling constants 

(Figure 18b) and makes a very distinct multiplicity. As these interior vinyl hydrogens in 

each of the two allyl ether groups are in the same environment their chemical shifts are at 

around 5.6 ppm. 

Group 5: This group represents the aromatic protons on benzene ring. On the NMR 

spectrum, the aromatic peaks are at around 6.2 ppm, which are in the lower ppm region 

of the spectrum within the aromatic region. Since the aryl ring has electron donating 
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groups, the electronic of the ring gives these aryl protons a chemical shift around 6 ppm. 

In other words, the lone pair of electrons of oxygens on the aryl ring push the electron 

density into the ring via resonance, making the aryl proton peaks appear more upfield. 

Also, as there is no symmetry in this molecule and each of the two aromatic hydrogens 

are in different chemical environments, the two protons have distinct chemical shifts. 

Moreover, lack of neighboring protons to couple, the peaks appear as singlet. 

4.2.1.2 H-NMR for compound 61: 
 

(a) 
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(b) 

 

Figure 19. (a) Actual H-NMR for compound 61; (b) Predicted H-NMR for compound 61. 

Group 1:  The methyl group on the 4-position of the benzyl unit is similar to the methyl 

group on toluene, which based on data in the Spectral Database for Organic Compounds 

maintained by the Japanese AIST, has the chemical shift of 2.34 ppm in CDCl3. The 

chemical shift for this peak in our actual NMR spectrum (Figure 19a) is exactly at 2.34 

ppm, confirming its assignment. 

Group 2: This methyl group is part of the ester functional group where the methyl group 

is connected to oxygen atom. It makes this methyl group more deshielded than an 

aliphatic methyl group, and that is why the peak appears more downfield at 3.8 ppm in 

the NMR spectrum. As the three hydrogens on the methyl group are chemically and 

magnetically equivalent, it appears as a singlet. 

Group3: This methyl group is directly connected to the oxygen atom on an aryl ring. 

Hence, it is deshielded and shows up more downfield at 3.86 ppm. Like other methyl 

groups, it also shows up as a singlet on the NMR spectrum.  

Group 4: This peak represents the benzylic protons. Since the -CH2- group is connected 

to an aryl ring and an oxygen atom, the signal for these protons is shifted downfield to 

5.1 ppm. 
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Group 5: The proton in this group is on the benzene ring and expected to be seen at 

around 6.5 – 8.0 ppm range. As there are two electron donating groups next to this 

hydrogen (-OR), the protons on the ring are more shielded and show up more upfield. 

The signal for these protons is observed near 6.5 ppm. Figure 19a shows two peaks next 

to each other at 6.5 ppm, as a singlet and a doublet. The singlet peak at this chemical shift 

represents the proton in this group with no neighboring proton to couple. 

Group 6: This is another hydrogen on the aromatic ring next to an electron donating 

group (-OR) and another hydrogen. As there is an electron donating group next to it, it is 

not surprising to see the peak more upfield and near 6.5 ppm. Also, as it is shown in 

Figure 18a There are two peaks at 6.5 ppm next to each other, a singlet and a doublet, 

which the doublet one is attributed to this hydrogen. This proton couple with the adjacent 

hydrogen on the aryl ring and appears as a doublet. 

Group 7: In the proton NMR (Figure 19a), there is a symmetrical doublet-doublet pattern 

at 7.2 ppm and 7.4 ppm which is extremely a strong evidence for para-substituted 

benzene. These two doublets represent the four protons on the aryl ring of the benzyl 

group. Each two protons opposite each other on the benzene ring can be assumed to be in 

the same chemical and magnetic environment. So, each set is represented in one peak and 

appears as doublet due to coupling with adjacent aryl proton. 

Group 8: This is the most downfield peak at 7.8 ppm which stands for the hydrogen on 

the benzene ring next to a carbonyl group. As the carbonyl group is an electron 

withdrawing group, it is expected the adjacent hydrogen would be less shielded and 

shows up more downfield. Figure 18a shows the chemical shift and the splitting pattern 

for this peak.  
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4.3 Antibacterial evaluation of selected methyl-4-methoxysalicylate analogs: 

Since α-mangostin is known to exhibit antibacterial activity against a broad range of 

bacteria, we investigated the antibacterial activity of the synthetic analogs we have 

generated. As a first step, we selected two benzyl-ether analogs (58 and 60) for the 

antibacterial evaluation. The studies were done using standard Gram-positive strains (two 

different S. aureus, and a S. epidermidis) that show greater sensitivity to antibiotics and 

α-mangostin. Since these Gram-positive bacteria are relatively easy to cultivate in the 

laboratory, and commonly used for antibiotic discovery efforts, we selected these bacteria 

for our evaluation. Additionally, these bacteria are also associated with various types of 

infections in clinical setting. The data are shown in Table 1 below. The minimum 

inhibitory concentration (MIC) value determination was done by a Ph.D. student, Nikita 

Acharekar in the Yoganathan lab. Ciprofloxacin and α-mangostin were used as positive 

control and exhibited potent MIC values in the range of 0.01 – 0.6 µg/mL. We found that 

the synthetic analogs 58 and 60 showed no antibacterial activity even at 100 µg/mL. 

Although the biological data is not promising at this stage, our plan is to continue to test 

the remaining analogs against a panel of bacteria. In addition, as anti-cancer property of 

this group of compounds is an interest to us, we may be exploring the anti-cancer activity 

of these analogs in the future. 
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MIC values (µg/mL) 

Compound 
name or # 

Compound 
Structure 

S. aureus 
(ATCC 
29213) 

S. aureus 
(ATCC 
12600) 

S. epidermidis 
(ATCC 12228) 

α-mangostin 

 

0.01 0.6 0.6 

ciprofloxacin 

 

0.3 0.3 0.3 

58 

 

>100 >100 >100 

60 

 

>100 >100 >100 

Table 1. Antibacterial activity of selected methyl-4-methoxysalicylate analogs. 
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CHAPTER 5. CONCLUSION 

 

Herein, we report a direct and efficient approach to access several non-xanthone α-

mangostin analogs. Currently reported methods in the literature are using commercially 

available α-mangostin to make new analogs with improved efficacy and less toxicity99, 

103, 105, 108, 119. But our approach utilizes a simple commercially available phenolic acid 

substrate to prepare a series of ‘non-xanthone’ derivatives for medicinal chemistry 

evaluation. We have developed a synthetic method to make α-mangostin analogs by 

using the commercially available methyl-4-methoxysalicylate as the precursor, and 

selectively modified the phenol motif in a one-step process. Our approach generated a 

series of benzyl ether analogs via one-step synthesis. Since there is a large array of benzyl 

halides available commercially, one can use our method to generate an extensive library 

of analogs for medicinal chemistry studies. Although our initial antibacterial study did 

not provide any potent analogs, we believe that using the chemistry we developed, more 

analogs can be synthesized to identify potential antibacterial compounds of this nature. 

Additionally, these analogs we have generated can be tested against other pathogenic 

bacteria and likely for cytotoxicity against cancer cell lines.  
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