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ABSTRACT 

CHEMICAL SPACE EXPLORATION AROUND THIENO[3,2-d]PYRIMIDIN-
4(3H)-ONE SCAFFOLD LED TO A NOVEL CLASS OF HIGHLY ACTIVE 

CLOSTRIDIUM DIFFICILE INHIBITORS 
Xuwei Shao 

Clostridium difficile infection (CDI) is the leading cause of healthcare-associated 

infection in the United States. Therefore, development of novel treatments for CDI is a 

high priority. Toward this goal, we began in vitro screening of a structurally diverse in-

house library of 67 compounds against two pathogenic C. difficile strains (ATCC BAA 

1870 and ATCC 43255), which yielded a hit compound, 2-methyl-8-nitroquinazolin-

4(3H)-one (2) with moderate potency (MIC = 312/156 µM). Optimization of 2 gave 

lead compound 6a (2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one) with improved 

potency (MIC = 19/38 µM), selectivity over normal gut microflora, CC50s >606 µM 

against mammalian cell lines, and acceptable stability in simulated gastric and intestinal 

fluid. Further optimization of 6a at C2-, N3-, C4- and C7-positions resulted in a library 

of >50 compounds with MICs ranging from 3 – 800 µM against clinical isolates of C. 

difficile. Compound 8f (MIC = 3/6 µM) was identified as a promising lead for further 

optimization. 
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Chapter I. Introduction 
1.1. Clostridium difficile infection 

Clostridium difficile is a Gram-positive spore-forming anaerobic bacterium that causes 

diarrhea and serious intestinal conditions. Toxigenic strains of C. difficile produce two 

glycosylating toxins: toxin A (TcdA/enterotoxin) and toxin B (TcdB/cytotoxin), both 

of which initiate damage of the colon, life-threatening inflammation of the gut (C. 

difficile colitis), and a spectrum of intestinal pathologies ranging from mild diarrhea to 

pseudomembranous colitis in the infected host.1-3 The CDI, confined to the 

gastrointestinal tract, is usually triggered by the use of antibiotics, which disturbs the 

reproduction of normal and protective gut microflora allowing C. difficile to proliferate 

in the colon and to produce toxins.4 According to Centers for Disease Control and 

Prevention (CDC), about half a million cases of CDI occur each year in the US hospitals 

and long-term health care facilities with an estimation of 29,000 deaths. The prevalence 

and severity of CDI appear to be rising, partly due to a larger elder population with high 

risk factors, an increasing use of antibiotics, a higher proportion of hypervirulent 

bacterial isolates with increased production of lethal toxins A and B,5 and the emergence 

of hypervirulent epidemic strains (BI/Nap1/027).6  

1.2. Therapeutic options available for CDI 

However, therapeutic options available for CDI patients are limited. In 2010, the 

Infectious Diseases Society of America provided clinical practice guidelines for CDI, 

in which metronidazole, vancomycin and fidaxomicin are recommended.7 

Metronidazole diffuses into the organism, inhibits protein synthesis by interacting with 

DNA and causing a loss of helical DNA structure and strand breakage. Therefore, it 

causes cell death in susceptible organisms. 
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Figure 1. Products of metronidazole reduction. Modified based on previous report.8, 9 

Multiple steps are required for metronidazole molecules to perform their 

therapeutic function. After diffusing across the cell membranes of anaerobic and 

aerobic pathogens, nitro group on the molecules is reduced to form free radicals with 

cytotoxic effect (Figure 1). Hypoxic condition is required during the reduction, which 

explains the selectivity of metronidazole towards anaerobic C. difficile strains.10 The 

formed free radicals interact with various constituents in the cells, and lead to cell 

death.8  

Since approved by the US FDA, vancomycin has been an effective therapeutic option 

for CDI patients.11 In Gram-positive bacteria, vancomycin inhibits formation of polymer 

of glycopeptide (Figure 2). Because of the absence of peptide crosslink, peptidoglycan 

layer becomes less rigid and more permeable, and eventually the bacterium bursts from 

osmotic lysis.12  
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Figure 2. Mechanism of action of vancomycin. Modified based on previous report.13 

On the contrary to metronidazole or vancomycin, inhibitory activity of fidaxomicin 

against C. difficile strains is the result of blockage of RNA polymerase activity.14 To 

initialize transcription process, specific promoter σ combines with the core RNA 

polymerase (RNAP), which contains α-dimer, β-, β′-, and ω-subunits. Then the 

complex recognizes and binds to DNA template, which leads to the formation of open 

RNAP-DNA complex. One of the proposed mechanisms of action of fidaxomicin is 

that it binds to β′-subunit and σ factor, which blocks formation of the essential 

component (Figure 3).15 

 

Figure 3. Mechanism of action of fidaxomicin. Modified from previous report.13, 15 
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1.3. Drawbacks of medications used for CDI 

Currently available therapeutics (metronidazole, vancomycin and fidaxomicin) for CDI 

are inadequate in efficacy and/or tolerability.3 Both metronidazole and vancomycin 

treatments encounter substantial disease relapse.16 Metronidazole, an antibiotic with 

activity against a wide spectrum of anaerobic bacteria and parasites, is only 

recommended for the treatment of mild-to-moderate episodes and is inferior to 

vancomycin.17 Moreover, it is essentially 100% bioavailable leading to limiting 

concentrations in the colon, the prime location of CDI.18 Unlike metronidazole, 

vancomycin is minimally absorbed into the systemic circulation upon oral 

administration, thereby resulting in a high concentration in the colon.19 However, its 

broad spectrum of action against Gram-positive bacteria leads to a reduced microbiome 

diversity and the potential selection of vancomycin-resistant enterococci.20 In addition, 

recurrent infection caused by newer and stronger C. difficile strains is a formidable 

preclinical challenge.21 Both metronidazole and vancomycin treatments can worsen the 

condition of patients due to the loss of beneficial gut microbiota, and subsequent 

recurrence at an alarming rate. Selectively targeting C. difficile over normal gut flora 

has been considered as a strategy to achieve prevention of recurrence.22 Compared with 

vancomycin, fidaxomicin (a macrolide antibiotic) demonstrates a narrower spectrum of 

activity and selectivity towards C. difficile; however, it does not greatly improve 

sustained clinical responses especially against hypervirulent strains BI/NAP1/027.23 In 

view of the transient efficacy of these antibiotics, particularly of metronidazole and 

vancomycin, patients are predisposed to ~25% relapse rate as compared to 15% for 

fidaxomicin and a subsequent prolongation of C. difficile shedding and transmission.24, 

25 Although fidaxomicin treatment showed significantly lower rates of CDI recurrence 

compared to metronidazole and vancomycin, it does so only in non-NAP1 CDI patients. 
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In addition, clinical resistance to fidaxomicin has already been documented.24 Although 

93% of fidaxomicin remains unabsorbed after oral administration, it is detectable in the 

range of 25-50 ng/mL in the plasma of patients,26 which leads to a serious concern of 

potent cytotoxic effect. Moreover, the cost of fidaxomicin treatment is prohibitively 

expensive partly due to complexity in synthesizing a large molecule with molecular 

weight beyond 1000 Da. Although ridinilazole (NCT02784002) is currently 

undergoing clinical trials for the treatment of CDI, it remains to be seen whether it 

would offer any benefit over current treatment.27 Despite unmet medical need, progress 

toward anti-C. difficile drug development has been very limited.28-32 Therefore, the 

discovery of new “best-in-class” drugs to fight against C. difficile is needed to 

adequately address CDI.
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Chapter II. Design rationale 
To identify highly selective novel C. difficile inhibitors, we conducted whole-cell 

screening of a set of 67 in-house compounds (Table 1), comprising diverse structural 

classes (valine-, proline-, phenylalanine-, and tyrosine-derived thiazole 

peptidomimetics and quinazolinones, benzoxazines, indazoles, benzodioxines, 

imidazopyridines, and benzodioxepines) with molecular weights (MW) ranging from 

164 to 652 Da.  

Table 1. List of in-house compound library used for HTS 

Compound Code Structure 

HTS-1 

 

HTS-2 

 

HTS-3 
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HTS-4 

 

HTS-5 

 

HTS-6 

 

HTS-7 

 

HTS-8 

 

HTS-9 
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HTS-10 

 

HTS-11 

 

HTS-12 

 

HTS-13 

 

HTS-14 

 

HTS-15 

 

HTS-16 
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HTS-17 

 

HTS-18 

 

HTS-19 

 

HTS-20 

 

HTS-21 

 

HTS-22 

 

HTS-23 
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HTS-24 

 

HTS-25 

 

HTS-26 

 

HTS-27 

 

HTS-28 

 

HTS-29 

 

HTS-30 
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HTS-31 

 

HTS-32 

 

HTS-33 

 

HTS-34 

 

HTS-35 

 

HTS-36 

 

HTS-37 
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HTS-38 

 

HTS-39 

 

HTS-40 

 

HTS-41 

 

HTS-42 

 

HTS-43 

 

HTS-44 
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HTS-45 

 

HTS-46 

 

HTS-47 

 

HTS-48 

 

HTS-49 

 

HTS-50 

 

HTS-51 
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HTS-52 

 

HTS-53 

 

HTS-54 

 

HTS-55 

 

HTS-56 

 

HTS-57 

 

HTS-58 

 

HTS-59 

 

HTS-60 
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HTS-61 

 

HTS-62 

 

HTS-63 

 

HTS-64 

 

HTS-65 

 

HTS-66 

 

HTS-67 

 
 

This screening method allowed us to ensure penetration of the C. difficile cell 

membrane as well as to obtain minimum inhibitory concentrations (MICs) as biological 

readouts to identify promising hit compounds. Each scaffold in the library had a 

sufficient number of structurally close analogues to produce robust results while 

capturing key SAR trends. This screening test identified two previously reported 

quinazolinone analogues33, 34 as hit compounds, 6-nitroquinazolin-4(3H)-one (1, MIC = 
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335/335 µM, hereafter, against two C. difficile clinical strains; ATCC BAA 1870/ATCC 

43255) and 2-methyl-8-nitroquinazolin-4(3H)-one (2, MIC = 312/156 µM) (3% 

success rate) that showed moderate to weak MICs. In vitro MIC values were compared 

with three FDA approved drugs, vancomycin, metronidazole and fidaxomicin. 

Compound 2 was established as a promising fragment hit for further medicinal 

chemistry optimization because of its selectivity profile toward multiple clinical strains 

of C. difficile over human normal microflora (MIC >1248 µM) such as Lactobacillus, 

Bifidobacterium, Escherichia coli, and Enterobacter cloacae) (Figure 4). Medicinal 

chemistry optimization of hit 2 via analogue synthesis produced compounds 3-5 with a 

loss of potency suggesting the contribution of the C8-nitro substituent. Next, we 

decided to implement scaffold hopping strategy, which led to identification of small 

MW scaffolds 6a (MIC = 19/38 µM), 6b (MIC = 41/41 µM) and 6c (MIC = 38/38 µM). 

Compound 6a was prioritized for further SAR study based on its structural novelty, 

ease of synthetic derivatization, favorable potency, selectivity, and in vitro mammalian 

cell toxicity as shown in Figure 4.  

 

Figure 4. Hit identification.  
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Chapter III. Experimental 
3.1. Chemicals and Bacterial Strains 

Chemical reagents and solvents were purchased from Aldrich Chemical Co. 

(Milwaukee, WI), AK scientific (Union City, CA), Combi-Blocks Inc. (San Diego, CA), 

TCI America (Portland, OR), Gold Biotechnology (St. Louis, MO), Alfa Aesar (Ward 

Hill, MA) and Sigma-Aldrich (St. Louis, MO), and were used as received. 

Table 2. Bacterial strains used in the study  

Bacterial strain ID number Comments 

Clostridium 

difficile 4118 

ATCC BAA-

1870 

Clinical isolate from Main, USA. Toxinotype 

IIIb, ribotype 027, tcdA+ and tcdB+ 

Clostridium 

difficile VPI 

10463 

ATCC 43255 
Clinical isolate from abdominal wound. 

Toxinotype 0, ribotype 087, tcdA+ and tcdB+. 

Lactobacillus 

crispatus JV-

V01 

HM-103 Isolated from normal human vaginal flora.  

Lactobacillus 

casei Hansen 

and Lessel 

ATCC 334 Isolated from Dairy products; emmental cheese.  

Lactobacillus 

gasseri 

EX336960VC03 

HM-400 
Isolated from human mid-vaginal wall in March 

2010 in Richmond, Virginia.  

Bifidobacterium 

bifidum 212A 
ATCC 11863 ---  

Escherichia coli 

Castellani and 

Chalmers 

ATCC 25922 
Standard FDA strain for antibiotic susceptibility 

testing 

Enterobacter 

cloacae 

ATCC BAA-

1143 
Quality control strain 
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 Bacterial strains (Table 2) were purchased from American Type Culture Collection 

(ATCC) or Biodefense and Emerging Infections Research Resources Repository (BEI 

resources). Bacterial media were purchased from Becton, Dickinson and Company 

(Cockeysville, MD) while cell culture media and fetal bovine serum were purchased 

from Fisher scientific (Waltham, MA). 

3.2. Chemistry-General  

All chemicals reagents were confirmed for uniformity by thin layer chromatography 

(TLC) with silica gel as the adsorbent layer (250 microns) on aluminum backed plates 

(Agela Technologies, Torrance, CA). Reactions were monitored by TLC and visualized 

by ultraviolet (UV) light at 254 nm. 1H NMR spectra (at 400 MHz) and 13C NMR spectra 

(at 100 MHz) were recorded on a Bruker 400 UltrashieldTM spectrometer. Chemical 

shifts (δ) of 1H NMR and 13C NMR were reported downfield from tetramethylsilane 

(TMS, internal standard) in parts per million (ppm) units. The 1H NMR data are 

presented as follows: chemical shift [multiplicity s (singlet), bs (broad singlet), d 

(doublet), t (triplet), q (quartet), hept (heptet), dd (doublet of doublets), and m 

(multiplet), number of protons, coupling constant]. The 13C NMR (proton decoupled, 

fluorine coupled) data are presented as follows: chemical shift [multiplicity d (doublet)]. 

Flash chromatography was carried out on a Reveleris X2 flash chromatography system 

(Buchi Corporation, New Castle, DE). Preparative TLC was used for the purification 

of certain target compounds using Silica Gel GF 1000 μm 20x20 cm glass backed plates 

from Analtech (Miles Scientific, Newark, DE). Purity of the target compounds was 

established by HPLC analysis using Waters 600 HPLC system with a Waters 717 plus 

autosampler, Waters 2487 dual 18λ absorbance detector at 254 nm (Waters, Milford, 

MA) and a C18 reverse phase column (Luna® 5 µm C18 100 Å, LC Column 150 x 4.6 

mm) at respective flow rate. Purity of the target compounds was determined to be ≥ 95% 
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based on HPLC analysis. The purity of all target compounds was determined by the 

ratio of major peak area to the total combined area of peaks. Melting points were 

determined using Stuart digital melting point apparatus SMP20 (Cole-Parmer, 

Staffordshire, UK) and are uncorrected. Mass spectra were recorded for known target 

compounds using an Agilent 1260 infinity series liquid chromatography (LC) system 

(C18 column, Agilent InfinityLab poroshell 120, EC-C18, 2.7 μm 4.6 x 50 mm) 

connected with Agilent 6120 quadrupole mass spectrometer (MS). Aqueous solubility 

in PBS buffer and stability in simulated gastric fluid and simulated intestinal fluid were 

determined using Waters 600 HPLC system with a Waters 717 plus autosampler, 

Waters 2487 dual 19λ absorbance detector (Waters, Milford, MA) and a C18 reverse 

phase column (Symmetry C18, 5 μm, 3.9 x 150 mm) at a flow rate of 1 mL/min. The 

X-ray intensity data were measured on a Bruker APEX-II CCD system equipped with 

a graphite monochromator and a Mo sealed tube (λ = 0.71073 Å). High resolution mass 

spectra (HRMS) were obtained for all unknown target compounds from the Columbia 

University Chemistry Department Mass Spectrometry Facility on a Waters Xevo G2-

XS QToF mass spectrometer equipped with H-Class UPLC inlet and a LockSpray ESI 

source. 

3.3. Synthetic procedure 

3.3.1. General Procedure for Synthesis of Thienopyrimidinone Analogues 

(Method A).34 

Commercially available amino and methyl ester substituted aromatic/heteroaromatic 

compound (1 eq mmol) was added to a flask containing acetic anhydride (20 mL). After 

stirring at room temperature for 12 to 24 h, excess liquid was removed under vacuum. 

The crude product was then purified by flash chromatography with dry loading method 

as described below. The crude residue was dissolved in a mixture of acetone and 
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methanol (50:50) and 8 g of silica gel was added into the same flask. Completely dried 

solid was transferred into a solid loader and installed onto flash chromatography. 

Without further purification unless otherwise indicated, respective intermediates were 

stirred in 30% aqueous solution of ammonium hydroxide (30 mL) at rt until a complete 

conversion of starting material was observed by TLC. During the process, the mixture 

turned into a clear solution from a suspension. Ammonia was first released at a lower 

temperature under vacuum, and then water was evaporated at a higher temperature. A 

solid product was obtained by flash chromatography using dry loading method and 

dichloromethane/methanol as an eluent system. 

3.3.2. General Procedure for the Insertion of a Nitro Group on the Core 

Structures (Method B).35 

Concentrated sulfuric acid (10 mL) was cooled down to 0 °C on ice bath. Respective 

scaffold (1 eq) was added and stirred for half an hour before drop wise addition of 

fuming nitric acid (1 mL). The resulting mixture was stirred for half an hour at 0 °C 

and 8 h at rt to produce yellow solution, which was then poured into excess ice water 

and neutralized with NaHCO3 to pH 7. The solid precipitates were filtered and washed 

with water.36  

3.3.3. General Procedure for the Synthesis of C2-styryl Derivatives of 

Thienopyrimidinone Core (Method C).37, 38 

To a 0.5-2 mL microwave vial, compound 6a (1 eq), (un)substituted 

aromatic/heteroaromatic aldehydes (5 eq), and acetic acid (2 mL) were added. After the 

vial was crimped, the mixture was subjected to irradiation and the temperature was 

maintained at 180 °C for 1 h in a mono-cavity microwave initiator. After heating, 

compressed air was used to cool down the reaction mixture. The process was repeated 
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5 times and the resulting mixture was purified by flash chromatography using dry 

loading method and dichloromethane/methanol as an eluent system. 

3.3.4. General Procedure for Alkylation at N3-position of Thienopyrimidinone 

Core (Method D).39 

Compound 6a (1 eq) was reacted with (un)substituted phenylalkyl halide or halo acetate 

(1.8 eq) in the presence of K2CO3 (2 eq) in N,N-dimethylformamide (15 mL) at rt for 8-

12 h. After complete consumption of starting material monitored by TLC, the mixture 

was diluted with ethyl acetate (100 mL) and washed with saturated aqueous solution of 

NaHCO3 and brine three times each. Organic layer was dried over anhydrous MgSO4 

and evaporated under vacuum. The crude product was purified by flash 

chromatography using dry loading method and dichloromethane/methanol as an eluent 

system. 

3.3.5. 2-Methyl-8-nitroquinazolin-4(3H)-one (2).34 Intermediate 2-methyl-8-nitro-

4H-benzo[d][1,3]oxazin-4-one 17 (206 mg, 1.0 mmol) was used as starting material to 

prepare compound 2 according to method A as an orange solid (123 mg, 60% yield), 

mp 247-249 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.62 (s, 1H), 8.27 (dd, J = 

24.6 Hz, 7.4 Hz, 2H), 7.59 (t, J = 7.7 Hz, 1H), 2.37 (s, 3H). ESI-MS: m/z 206.1 [M + 

H]+. HPLC flow rate 0.5 mL/min, tR (acetonitrile/water 90:10) = 5.9 min, purity 99%. 

3.3.6. 2-Methylpyrido[2,3-d]pyrimidin-4(3H)-one (3).40 Intermediate 2-methyl-4H-

pyrido[2,3-d][1,3]oxazin-4-one 18 (162 mg, 1.0 mmol) was used as the starting 

material to synthesize target compound 3 according to method A as a white solid (78 

mg, 48% yield), mp 275-278 °C [lit. mp 261-263 °C].41 1H NMR (400 MHz; DMSO-d6; 

TMS) δ 12.50 (s, 1H), 8.90 (q, J = 5.2 Hz, 1H), 8.46 (dd, J = 12.0 Hz, 3.2 Hz, 1H), 7.48 

(q, J = 17.2 Hz, 1H), 2.40 (s, 3H). ESI-MS: m/z 162.1 [M + H]+. HPLC flow rate 0.5 

mL/min, tR (acetonitrile/water 90:10) = 4.2 min, purity 99%. 
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3.3.7. 8-Fluoro-2-methylquinazolin-4(3H)-one (4).34, 42 Intermediate 8-fluoro-2-

methyl-4H-benzo[d][1,3]oxazin-4-one 19 (179 mg, 1.0 mmol) was used for the 

preparation of 4 according to method A as a white solid (121 mg, 68% yield), mp 273-

275 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.45 (s, 1H), 7.94 (d, J = 7.9 Hz, 1H), 

7.73 – 7.68 (m, 1H,), 7.54 – 7.49 (m, 1H), 2.36 (s, 3H). ESI-MS: m/z 179.1 [M + H]+. 

HPLC flow rate 1 mL/min, tR (acetonitrile/water 65:35) = 5.7 min, purity 97%. 

3.3.8. 8-Amino-2-methylquinazolin-4(3H)-one (5).42 To a 50 mL beaker, compound 

2 (205 mg, 1.0 mmol), Pd/C (20 mg) and ethanol (20 mL) were added and the beaker 

was transferred into a Parr-hydrogenation vessel. Upon three times replacements of air 

by nitrogen, hydrogen gas was introduced until 50 psi. After no further consumption of 

hydrogen was observed, reaction mixture was removed and filtered through celite. 

Compound 5 was collected upon concentration under vacuum as a yellow solid (123 

mg, 70% yield), mp 232-234 °C [lit. mp 226-230 °C].34 1H NMR (400 MHz; DMSO-d6; 

TMS) δ 12.05 (s, 1H), 7.19 (dd, J = 7.7 Hz, 1.4 Hz, 1H), 7.11 (t, J = 15.3 Hz, 1H), 6.93 

(dd, J = 7.7 Hz, 1.2 Hz, 1H), 5.57 (s, 2H), 2.34 (s, 3H). ESI-MS: m/z 176.1 [M + H]+. 

HPLC flow rate 1 mL/min, tR (acetonitrile/water 65:35) = 4.9 min, purity 99%. 

3.3.9. 2-Methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (6a). Nitro group was 

introduced onto 7a (166 mg, 1.0 mmol) according to method B to yield 6a as a white 

solid (158 mg, 75% yield), mp 249-252 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 

12.90 (s, 1H), 9.31 (s, 1H), 2.44 (s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 

159.23, 157.84, 149.26, 141.31, 138.99, 122.05, 21.87. HRMS (m/z): [M + H]+ calcd 

for C7H6N3O3S, 212.0124; found: 212.0099.  

3.3.10. 2-Methyl-7-nitrofuro[3,2-d]pyrimidin-4(3H)-one (6b). Compound 7b (150 

mg, 1.0 mmol) was subjected to nitration according to method B to obtain 6b as a white 

solid (160 mg, 82% yield), mp 270-273 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 
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12.98 (s, 1H), 8.05 (s, 1H), 2.39 (s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 

158.39, 154.56, 152.56, 147.18, 137.32, 108.19, 21.73. HRMS (m/z): [M + H]+ calcd 

for C7H6N3O4, 196.0353; found: 196.0333.  

3.3.11. 2-Methyl-7-nitrothieno[3,4-d]pyrimidin-4(3H)-one (6c). Nitration of 7c (166 

mg, 1.0 mmol) using method B gave 6c as a white solid (84 mg, 40% yield), mp 256-

258 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.43 (s, 1H), 8.84 (s, 1H), 2.39 (s, 

3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 161.18, 157.40, 147.01, 138.43, 135.17, 

125.67, 22.41. HRMS (m/z): [M + H]+ calcd for C7H6N3O3S, 212.0124; found: 212.0131.  

3.3.12. 7-Nitrothieno[3,2-d]pyrimidin-4(3H)-one (6d).43 Compound 7d (152 mg, 1.0 

mmol) was nitrated as per method B to produce 6d as a white solid (130 mg, 69% yield), 

mp 240-243 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.03 (s, 1H), 9.35 (s, 1H), 

8.37 (s, 1H). ESI-MS: m/z 198.0 [M + H]+). HPLC flow rate 0.5 mL/min, tR 

(acetonitrile/water 90:10) = 5.8 min, purity 96%.  

3.3.13. 2-Ethyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one  (6e). Nitration of 7e (180 

mg, 1.0 mmol)) according to method B yielded 6e as a white solid (158 mg, 70% yield), 

mp 270-273 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.87 (s, 1H), 9.31 (s, 1H), 

2.70 (q, J = 5.7 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): 

δ 163.29, 157.96, 149.31, 141.51, 138.89, 122.25, 28.28, 11.93. HRMS (m/z): [M + H]+ 

calcd for C8H8N3O3S, 226.0281; found: 226.0289.  

3.3.14. 7-Nitro-2-propylthieno[3,2-d]pyrimidin-4(3H)-one (6f). The nitro group was 

inserted in compound 7f (194 mg, 1.0 mmol) according to method B to produce 6f as a 

white solid (156 mg, 65% yield), mp 282-284 °C. 1H NMR (400 MHz; DMSO-d6; TMS) 

δ 12.88 (s, 1H), 9.31 (s, 1H), 2.66 (t, J = 7.5 Hz, 2H), 1.80 – 1.70 (m, 2H), 0.95 (t, J = 

7.3 Hz, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 162.28, 157.95, 149.32, 141.50, 
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138.92, 122.21, 36.66, 20.95, 13.92. HRMS (m/z): [M + H]+ calcd for C9H10N3O3S, 

240.0437; found: 240.0448.  

3.3.15. 7-Nitro-2-(3-nitrophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (6g). Nitro 

group was introduced onto 7g (228 mg, 1.0 mmol) according to method B to obtain 6g 

as a white solid (159 mg, 50% yield), mp >310 °C. 1H NMR (400 MHz; DMSO-d6; 

TMS) δ 13.56 (s, 1H), 9.41 (s, 1H), 9.05 (t, J = 4.1 Hz, 1H), 8.62 (d, J = 8.0 Hz, 1H), 

8.47 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): 

δ 158.36, 155.04, 148.84, 148.44, 141.70, 139.77, 134.86, 134.14, 130.95, 126.81, 

123.53, 123.47. HRMS (m/z): [M + H]+ calcd for C12H7N4O5S, 319.0132; found: 319.0144.  

3.3.16. 2-Methylthieno[3,2-d]pyrimidin-4(3H)-one (7a). Compound 7a was prepared 

from methyl 3-aminothiophene-2-carboxylate 20 (157 mg, 1.0 mmol)) using method A 

as a white solid (83 mg, 50% yield), mp 235-238 °C [lit. mp 242 °C].44 1H NMR (400 

MHz; DMSO-d6; TMS) δ 12.41 (s, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.31 (d, J = 8.2 Hz, 

1H), 2.37 (s, 3H). ESI-MS: m/z 167.0 [M + H]+. HPLC flow rate 0.5 mL/min, tR 

(acetonitrile/water 90:10) = 4.2 min, purity 98%. 

3.3.17. 2-Methylfuro[3,2-d]pyrimidin-4(3H)-one (7b).45 Intermediate 24b (50 mg, 0.3 

mmol) was refluxed in a mixture of 4M NaOH aqueous solution (10 mL) and methanol 

(20 mL) for 1 h. The resulting mixture was then neutralized to pH 7 using aqueous 

solution of 1M HCl and extracted with ethyl acetate three times. Organic layers were 

combined, dried over anhydrous MgSO4 and concentrated. The residue was purified 

using flash chromatography by dry loading method to obtain 7b as a white solid (16 

mg, 35% yield), mp 228-231 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.46 (s, 1H), 

8.17 (d, J = 8.2 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 2.34 (s, 3H). 13C NMR (100 MHz; 

DMSO-d6; TMS): δ 155.46, 152.12, 150.32, 148.33, 136.16, 107.89, 20.98. HRMS 

(m/z): [M + H]+ calcd for C7H7N2O2, 151.0502; found: 151.0487.  
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3.3.18. 2-Methylthieno[3,4-d]pyrimidin-4(3H)-one (7c).46 Compound 7c was 

prepared from 24c (55 mg, 0.3 mmol) according the procedure described for the 

preparation of 7b. Compound 7c was obtained as a white solid (20 mg, 40% yield), mp 

200-203 °C [lit. mp 232-233 °C].46 1H NMR (400 MHz; DMSO-d6; TMS) δ 11.62 (s, 

1H), 8.41 (d, J = 3.2 Hz, 1H), 7.63 (d, J = 3.3 Hz, 1H), 2.25 (s, 3H). ESI-MS: m/z 167.0 

[M + H]+. HPLC flow rate 0.5 mL/min, tR (acetonitrile/water 90:10) = 4.4 min, purity 

96%. 

3.3.19. Thieno[3,2-d]pyrimidin-4(3H)-one (7d).47, 48 To a round bottom flask 

containing 20 mL formamide, methyl 3-aminothiophene-2-carboxylate 20 (157 mg, 1.0 

mmol) was added. The reaction mixture was stirred at rt for 6 h. The solution was then 

diluted with 100 mL of ethyl acetate, washed three times with brine and the organic 

layer was dried over MgSO4. Compound 7d was purified using flash chromatography 

by dry loading method as a white solid (99 mg, 65% yield), mp 222-224 °C [lit. mp 

222-223 °C].49 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.51 (s, 1H), 8.19 (d, J = 5.4 

Hz, 1H), 8.16 (s, 1H), 7.41 (d, J = 5.3 Hz, 1H). ESI-MS: m/z 153.0 [M + H]+. HPLC 

flow rate 0.5 mL/min, tR (acetonitrile/water 90:10) = 4.1 min, purity 97%. 

3.3.20. 2-Ethylthieno[3,2-d]pyrimidin-4(3H)-one (7e).44 To synthesize 7e, 

intermediate 23e (170 mg, 0.8 mmol) was treated with 20 mL of 30% ammonium 

hydroxide aqueous solution and stirred for 6 h at rt. Excess ammonia was released at 

low temperature and liquid was removed at high temperature under vacuum to obtain 

7e as a white solid (87 mg, 60% yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.41 

(s, 1H), 8.18 (d, J = 5.2 Hz, 1H), 7.30 (d, J = 2.6 Hz, 1H), 2.65 (t, J = 8.0 Hz, 2H), 0.97 

(t, J = 7.8 Hz, 3H). 

3.3.21. 2-Propylthieno[3,2-d]pyrimidin-4(3H)-one (7f).39 Compound 7f was prepared 

from 23f (182 mg, 0.8 mmol) according to the procedure described for 7e as a white 
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solid (90 mg, 58% yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.39 (s, 1H), 8.14 

(d, J = 5.2 Hz, 1H), 7.34 (d, J = 2.9 Hz, 1H), 2.60 (t, J = 7.6 Hz, 2H), 1.78 – 1.67 (m, 

2H), 0.92 (t, J = 7.4 Hz, 3H). 

3.3.22. 2-Phenylthieno[3,2-d]pyrimidin-4(3H)-one (7g).50 Compound 7g was 

prepared using 23g (209 mg, 0.8 mmol) according to the procedure described for 7e. 

Isolated product was a white solid (51 mg, 28% yield), mp 228-230 °C [lit. 

mp >240 °C].50 1H NMR (400 MHz; D MSO-d6; TMS) δ 12.41 (s, 1H), 8.12 (d, J = 5.42 

Hz, 1H), 7.93 (d, J = 5.4 Hz, 2H,), 7.81 (d, J = 6.7 Hz, 1H), 7.68 – 7.58 (m, 3H). ESI-

MS: m/z 229.0 [M + H]+. HPLC flow rate 1 mL/min, tR (acetonitrile/water 75:25) = 3.3 

min, purity 95%. 

3.3.23. 2,7-Dimethylthieno[3,2-d]pyrimidin-4(3H)-one (7h).51 Compound 7h was 

prepared according to method A from methyl 3-amino-4-methylthiophene-2-

carboxylate 25 (171 mg, 1.0 mmol) as a white solid (77 mg, 43% yield), mp 255-257 °C. 

1H NMR (400 MHz; DMSO-d6; TMS) δ 12.39 (s, 1H), 7.78 (s, 1H), 2.39 (s, 3H), 2.28 

(s, 3H). HRMS (m/z): [M + H]+ calcd for C8H9N2OS, 181.0430; found: 181.0442. 

3.3.24. 7-Methylthieno[3,2-d]pyrimidin-4(3H)-one (7i).43 Compound 7i was prepared 

using methyl 3-amino-4-methylthiophene-2-carboxylate 25 (171 mg, 1.0 mmol) 

according to the procedure described for 7d as a white solid (100 mg, 60% yield), mp 

244-246 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.51 (s, 1H), 8.18 (s, 1H), 7.84 

(s, 1H), 2.32 (s, 3H). ESI-MS: m/z 167.0 [M + H]+. HPLC flow rate 1 mL/min, tR 

(acetonitrile/water 65:35) = 6.2 min, purity 95%. 

3.3.25. (E)-7-Nitro-2-styrylthieno[3,2-d]pyrimidin-4(3H)-one (8a). Compound 8a 

was prepared using 6a (150 mg, 0.7 mmol) and benzaldehyde (0.36 mL, 3.5 mmol) 

according to method C as a brown solid (60 mg, 28% yield), mp >310 °C. 1H NMR 

(400 MHz; DMSO-d6; TMS) δ 13.00 (s, 1H), 9.35 (s, 1H), 7.98 (d, J = 16.0 Hz, 1H), 
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7.69 (d, J = 6.9 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.07 (d, J = 16.1 Hz, 1H). 13C NMR (100 

MHz; DMSO-d6; TMS): δ 157.90, 155.90, 149.42, 141.60, 140.33, 139.33, 135.08, 

130.64, 129.63, 128.33, 122.33, 120.66. HRMS (m/z): [M + H]+ calcd for C14H10N3O3S, 

300.0437; found: 300.0454.  

3.3.26. (E)-2-(2-(Furan-2-yl)vinyl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8b). 

Compound 8b was prepared using 6a (150 mg, 0.7 mmol) and furan-2-carbaldehyde 

(0.29 mL, 3.5 mmol) according to method C as a dark brown solid (45 mg, 22% yield), 

mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.99 (s, 1H), 9.34 (s, 1H), 7.90 

(s, 1H), 7.81 (d, J = 15.5 Hz, 1H), 7.02 (d, J = 3.4 Hz, 1H), 6.82 (d, J = 15.5 Hz, 1H), 

6.68 (q, J = 1.3 Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 157.87, 155.77, 

151.27, 149.40, 146.30, 141.44, 139.28, 127.15, 121.92, 117.29, 116.09, 113.37. 

HRMS (m/z): [M + H]+ calcd for C12H8N3O4S, 290.0230; found: 290.0253.  

3.3.27. (E)-7-Nitro-2-(2-(thiophen-2-yl)vinyl)thieno[3,2-d]pyrimidin-4(3H)-one 

(8c). Compound 8c was prepared using 6a (150 mg, 0.7 mmol) and 2-thiophene 

carbaldehyde (0.33 mL, 3.5 mmol) according to method C as a dark brown solid (66 

mg, 31% yield), mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.90 (s, 1H), 

9.34 (s, 1H), 8.14 (d, J = 15.4 Hz, 1H), 7.74 (d, J = 4.9 Hz, 1H), 7.56 (d, J = 3.3 Hz, 

1H), 7.19 (t, J = 3.7 Hz, 1H), 6.80 (d, J = 15.3 Hz, 1H). 13C NMR (100 MHz; DMSO-

d6; TMS): δ 157.88, 155.71, 149.42, 141.49, 140.17, 139.33, 133.30, 132.21, 129.89, 

129.24, 122.03, 118.94. HRMS (m/z): [M + H]+ calcd for C12H8N3O3S2, 306.0002; found: 

306.0011.  

3.3.28. (E)-4-(2-(7-Nitro-4-oxo-3,4-dihydrothieno[3,2-d]pyrimidin-2-

yl)vinyl)benzoic acid (8d). Compound 8d was prepared using 6a (150 mg, 0.7 mmol) 

and 4-formylbenzoic acid (525 mg, 3.5 mmol) according to method C as a dark brown 

solid (58 mg, 24% yield), mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.10 
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(s, 2H), 9.36 (s, 1H), 8.04 – 8.00 (m, 3H), 7.80 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 16.3 

Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 167.27, 157.88, 155.54, 149.30, 

141.58, 139.42, 139.13, 139.00, 132.17, 130.48, 128.40, 122.99, 122.68. HRMS (m/z): 

[M + H]+ calcd for C15H10N3O5S, 344.0336; found: 344.0349.  

3.3.29. (E)-5-(2-(7-Nitro-4-oxo-3,4-dihydrothieno[3,2-d]pyrimidin-2-

yl)vinyl)furan-2-carboxylic acid (8e). Compound 8e was prepared using 6a (150 mg, 

0.7 mmol) and 5-formyl-2-furoic acid (490 mg, 3.5 mmol) according to method C as a 

dark brown solid (47 mg, 20% yield), mp >310 °C. 1H NMR (400 MHz; DMSO-d6; 

TMS) δ 13.43 (s, 1H), 13.03 (s, 1H), 9.36 (s, 1H), 7.83 (d, J = 15.8 Hz, 1H), 7.34 (d, J 

= 3.6 Hz, 1H), 7.16 (d, J = 3.6 Hz, 1H), 7.05 (d, J = 15.8 Hz, 1H). 13C NMR (100 MHz; 

DMSO-d6; TMS): δ 159.46, 157.70, 155.13, 153.92, 149.19, 146.31, 141.47, 139.39, 

126.38, 122.53, 120.98, 120.09, 116.79. HRMS (m/z): [M + H]+ calcd for C13H8N3O6S, 

334.0128; found: 334.0149.  

3.3.30. (E)-2-(4-Fluorostyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8f). 

Compound 8f was prepared from 6a (150 mg, 0.7 mmol) and 4-fluorobenzaldehyde 

(0.38 mL, 3.5 mmol) according to method C as a brown solid (44 mg, 20% yield), 

mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.00 (s, 1H), 9.34 (s, 1H), 7.96 

(d, J = 16.0 Hz, 1H), 7.76 (dd, J = 10.2 Hz, 4.2 Hz, 2H), 7.32 (t, J = 8.9 Hz, 2H), 7.02 

(d, J = 16.4 Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 163.50 (d, J = 247.8 Hz), 

157.84, 155.77, 149.33, 141.47, 139.36, 138.97, 131.68 (d, J = 3.0 Hz), 130.52 (d, J = 

8.2 Hz), 122.27, 120.45, 116.58 (d, J = 21.5 Hz). HRMS (m/z): [M + H]+ calcd for 

C14H9FN3O3S, 318.0343; found: 318.0363.  

3.3.31. (E)-2-(2-Fluorostyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8g). 

Compound 8g was prepared using 6a (150 mg, 0.7 mmol) and 2-fluorobenzaldehyde 

(0.38 mL, 3.5 mmol) according to method C as a dark brown solid (82 mg, 37% yield), 
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mp 301-303 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.11 (s, 1H), 9.36 (s, 1H), 

8.01 (d, J = 16.0 Hz, 1H), 7.80 (t, J = 3.7 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.37 – 7.31 (m, 

2H), 7.18 (d, J = 16.4 Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 161.03 (d, J = 

249.4 Hz), 157.87, 155.64, 149.30, 141.58, 139.41, 132.53 (d, J = 3.4 Hz), 129.44, 

129.41, 125.68 (d, J = 3.4 Hz), 123.19 (d, J = 6.4 Hz), 122.75, 122.72 (d, J = 27.7 Hz), 

116.73 (d, J = 21.8 Hz). HRMS (m/z): [M + H]+ calcd for C14H9FN3O3S, 318.0343; found: 

318.0367.  

3.3.32. (E)-2-(3-Fluorostyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8h). 

Compound 8h was prepared using 6a (150 mg, 0.7 mmol) and 3-fluorobenzaldehyde 

(0.38 mL, 3.5 mmol) according to method C as a dark brown solid (73 mg, 33% yield), 

mp 304-307 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.03 (s, 1H), 9.36 (s, 1H), 

7.96 (d, J = 16.2 Hz, 1H), 7.58 – 7.51 (m, 3H), 7.31 – 7.26 (m, 1H), 7.12 (d, J = 16.2 

Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 162.99 (d, J = 244.1 Hz), 157.85, 

155.59, 149.31, 141.60, 139.35, 138.88, 137.65 (d, J = 8.1 Hz), 131.57 (d, J = 8.3 Hz), 

124.60 (d, J = 2.3 Hz), 122.61, 122.35, 117.27 (d, J = 21.4 Hz), 114.55 (d, J = 21.9 Hz). 

HRMS (m/z): [M + H]+ calcd for C14H9FN3O3S, 318.0343; found: 318.0341. 

3.3.33. (E)-7-Nitro-2-(4-nitrostyryl)thieno[3,2-d]pyrimidin-4(3H)-one (8i). 

Compound 8i was obtained using 6a (150 mg, 0.7 mmol) and 4-nitrobenzaldehyde (529 

mg, 3.5 mmol) according to method C as a dark orange solid (48 mg, 20% yield), 

mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.11 (s, 1H), 9.36 (s, 1H), 8.30 

(d, J = 8.8 Hz, 2H), 8.04 (d, J = 16.0 Hz, 1H), 7.96 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 

16.1 Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 157.80, 155.19, 149.18, 148.22, 

141.60, 141.49, 139.49, 137.67, 129.36, 125.01, 124.70, 123.00. HRMS (m/z): [M + 

H]+ calcd for C14H9N4O5S, 345.0288; found: 345.0333. 
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3.3.34. (E)-4-(2-(7-Nitro-4-oxo-3,4-dihydrothieno[3,2-d]pyrimidin-2-

yl)vinyl)benzonitrile (8j). Compound 8j was prepared from 6a (150 mg, 0.7 mmol) 

and 4-cyanobenzaldehyde (459 mg, 3.5 mmol) according to method C as a dark brown 

solid (70 mg, 31% yield), mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.08 

(s, 1H), 9.36 (s, 1H), 8.00 (d, J = 8.4 Hz, 3H), 7.80 (d, J = 7.5 Hz, 2H), 7.17 (d, J = 15.7 

Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 167.30, 157.99, 155.64, 149.29, 

141.59, 139.38, 139.12, 138.95, 132.25, 130.47, 128.38, 123.09, 122.68. ESI-MS: m/z 

325.0 [M + H]+. HPLC flow rate 1 mL/min, tR (acetonitrile/water 50:50) = 3.0 min, 

purity 95%. 

3.3.35. (E)-2-(4-Chlorostyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8k). 

Compound 8k was prepared using 6a (150 mg, 0.7 mmol) and 4-chlorobenzaldehyde 

(492 mg, 3.5 mmol) according to method C as a dark brown solid (47 mg, 20% yield), 

mp 307-308 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.02 (s, 1H), 9.35 (s, 1H), 

7.95 (d, J = 15.9 Hz, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.07 (d, J 

= 16.1 Hz, 1H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 157.94, 155.74, 149.35, 

141.57, 139.36, 138.86, 135.06, 134.04, 130.02, 129.66, 122.48, 121.54. HRMS (m/z): 

[M + H]+ calcd for C14H9ClN3O3S, 334.0048; found: 334.0072.  

3.3.36. (E)-2-(4-Ethynylstyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8l). 

Compound 8l was prepared from 6a (150 mg, 0.7 mmol) and 4-ethynylbenzaldehyde 

(455 mg, 3.5 mmol) according to method C as a dark brown solid (57 mg, 25% yield), 

mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.04 (s, 1H), 9.36 (s, 1H), 7.97 

(d, J = 16.3 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 

16.0 Hz, 1H), 4.39 (s, 1H). ). 13C NMR (100 MHz; DMSO-d6; TMS): δ 159.25, 157.89, 

155.89, 149.41, 141.58, 140.31, 139.32, 138.94, 135.08, 130.63, 129.62, 128.32, 
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122.32, 120.65. HRMS (m/z): [M + H]+ calcd for C16H10N3O3S, 324.0437; found: 

324.0463.  

3.3.37. (E)-2-(4-Hydroxystyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8m). 

Compound 8m was prepared using 6a (150 mg, 0.7 mmol) and 4-hydroxybenzaldehyde 

(427 mg, 3.5 mmol) according to method C as a dark brown solid (62 mg, 28% yield), 

mp >310 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.90 (s, 1H), 10.09 (s, 1H), 9.34 

(s, 1H), 7.91 (d, J = 15.7 Hz, 1H), 7.52 (d, J = 8.6 Hz, 2H), 6.87 – 6.82 (m, 3H). 13C 

NMR (100 MHz; DMSO-d6; TMS): δ 160.14, 157.97, 156.46, 149.63, 141.53, 140.66, 

139.25, 130.29, 126.14, 121.64, 116.76, 116.50. HRMS (m/z): [M + H]+ calcd for 

C14H10N3O4S, 316.0387; found: 316.0402.  

3.3.38. (E)-2-(4-Methoxystyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (8n). 

Compound 8n was prepared using 6a (150 mg, 0.7 mmol) and 4-methoxybenzaldehyde 

(0.43 mL, 3.5 mmol) according to method C as a dark brown solid (81 mg, 35% yield), 

mp 294-297 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 12.92 (s, 1H), 9.34 (s, 1H), 

7.94 (d, J = 15.5 Hz, 1H), 7.64 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 8.2 Hz, 2H), 6.92 (d, J 

=15.5 Hz, 1H), 3.82 (s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 161.41, 157.94, 

156.28, 149.53, 141.53, 140.15, 139.21, 130.05, 127.68, 121.84, 117.93, 115.09, 55.82. 

HRMS (m/z): [M + H]+ calcd for C15H12N3O4S, 330.0543; found: 330.0573.  

3.3.39. 3-Benzyl-2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one (9a). 

Compound 9a was prepared from the reaction of 6a (106 mg, 0.5 mmol) and benzyl 

bromide (0.11 mL, 0.9 mmol) according to method D as a white solid (72 mg, 48% 

yield), mp 220-221 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.36 (s, 1H), 7.38 – 

7.28 (m, 3H), 7.22 (d, J = 7.3 Hz, 2H), 5.43 (s, 2H), 2.56 (s, 3H). 13C NMR (100 MHz; 

DMSO-d6; TMS): δ 160.06, 157.81, 147.49, 141.18, 139.77, 136.07, 129.31, 128.00, 
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126.89, 121.98, 47.03, 23.64. HRMS (m/z): [M + H]+ calcd for C14H12N3O3S, 302.0594; 

found: 302.0616.  

3.3.40. 2-Methyl-7-nitro-3-phenethylthieno[3,2-d]pyrimidin-4(3H)-one (9b). 

Compound 9b was obtained from the reaction of 6a (106 mg, 0.5 mmol) and (2-

bromoethyl)benzene (0.12 mL, 0.9 mmol) according to method D as a white solid (66 

mg, 42% yield), mp 227-229 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.33 (s, 1H), 

7.35 – 7.24 (m, 5H), 4.28 (t, J = 7.8 Hz, 2H), 2.99 (t, J = 7.6 Hz, 2H), 2.56 (s, 3H). 13C 

NMR (100 MHz; DMSO-d6; TMS): δ 159.82, 157.35, 147.31, 141.11, 139.52, 138.45, 

129.30, 129.10, 127.19, 121.90, 46.37, 33.78, 23.37. HRMS (m/z): [M + H]+ calcd for 

C15H14N3O3S, 316.0750; found: 316.0766.  

3.3.41. 2-Methyl-7-nitro-3-(3-phenylpropyl)thieno[3,2-d]pyrimidin-4(3H)-one 

(9c). Compound 9c was obtained by reacting 6a (106 mg, 0.5 mmol) with 1-bromo-3-

phenylpropane (0.14 mL, 0.9 mmol) according to method D as a white solid (69 mg, 

42% yield), mp 207-209 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.30 (s, 1H), 7.31 

– 7.26 (m, 4H), 7.20 – 7.16 (m, 1H), 4.08 (t, J = 7.9 Hz, 2H), 2.71 (t, J = 7.6 Hz, 2H), 

2.62 (s, 3H), 2.21 – 1.94 (m, 2H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 159.74, 

157.41, 147.28, 141.33, 141.07, 139.35, 128.78, 128.72, 126.41, 121.86, 44.45, 32.77, 

29.31, 23.32. HRMS (m/z): [M + H]+ calcd for C16H16N3O3S, 330.0907; found: 330.0927.  

3.3.42. 2-Methyl-7-nitro-3-(4-nitrobenzyl)thieno[3,2-d]pyrimidin-4(3H)-one (9d). 

Compound 9d was prepared by reacting 6a (106 mg, 0.5 mmol) with 4-nitrobenzyl 

bromide (194 mg, 0.9 mmol) according to method D as a dark orange solid (104 mg, 

60% yield), mp 218-220 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.38 (s, 1H), 8.21 

(d, J = 8.7 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 5.55 (s, 2H), 2.56 (s, 3H). 13C NMR (100 

MHz; DMSO-d6; TMS): δ 159.94, 157.75, 147.57, 147.37, 143.91, 141.21, 139.86, 
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128.20, 124.39, 121.97, 46.96, 23.70. HRMS (m/z): [M + H]+ calcd for C14H11N4O5S, 

347.0445; found: 347.0456.  

3.3.43. 2-Methyl-7-nitro-3-(2-nitrobenzyl)thieno[3,2-d]pyrimidin-4(3H)-one (9e). 

Compound 9e was obtained from the reaction of 6a (106 mg, 0.5 mmol) and 2-

nitrobenzyl bromide (194 mg, 0.9 mmol) according to method D as a white solid (95 

mg, 55% yield), mp 190-192 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.38 (s, 1H), 

8.23 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.08 (d, J = 

7.7 Hz, 1H), 5.71 (s, 2H), 2.54 (s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 160.09, 

157.66, 147.87, 147.68, 141.23, 139.80, 135.17, 131.21, 129.31, 127.09, 125.98, 

121.93, 45.54, 23.52. HRMS (m/z): [M + H]+ calcd for C14H11N4O5S, 347.0445; found: 

347.0468.  

3.3.44. 2-Methyl-7-nitro-3-(3-nitrobenzyl)thieno[3,2-d]pyrimidin-4(3H)-one (9f). 

Compound 9f was prepared using 6a (106 mg, 0.5 mmol) and 3-nitrobenzyl bromide 

(194 mg, 0.9 mmol) according to method D as a white solid (83 mg, 48% yield), mp 

194-197 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.37 (s, 1H), 8.18 – 8.16 (m, 2H), 

7.70 – 7.63 (m, 2H), 5.55 (s, 2H), 2.58 (s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): 

δ 159.98, 157.88, 148.51, 147.56, 141.20, 139.85, 138.39, 133.62, 130.87, 123.05, 

122.24, 122.00, 46.71, 23.78. HRMS (m/z): [M + H]+ calcd for C14H11N4O5S, 347.0445; 

found: 347.0462.  

3.3.45. 4-((2-Methyl-7-nitro-4-oxothieno[3,2-d]pyrimidin-3(4H)-

yl)methyl)benzonitrile (9g). Compound 9g was prepared from the reaction of 6a (106 

mg, 0.5 mmol) and 4-cyanobenzyl bromide (176 mg, 0.9 mmol) according to method 

D as a white solid (72 mg, 44% yield), mp 198-200 °C. 1H NMR (400 MHz; DMSO-d6; 

TMS) δ 9.37 (s, 1H), 7.84 (d, J = 7.2 Hz, 2H), 7.44 (d, J = 7.5 Hz, 2H), 5.50 (s, 2H), 

2.54 (s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 159.91, 157.74, 147.52, 141.82, 
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141.14, 139.86, 133.19, 127.88, 121.97, 119.09, 110.80, 47.05, 23.67. HRMS (m/z): 

[M + H]+ calcd for C15H11N4O3S, 327.0546; found: 327.0562.  

3.3.46. 3-(4-Methoxybenzyl)-2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one 

(9h). Compound 6a (106 mg, 0.5 mmol) was reacted with 4-methoxybenzyl bromide 

(0.13 mL, 0.9 mmol) according to method D to obtain 9h as a white solid (80 mg, 48% 

yield), mp 189-192 °C.  1H NMR (400 MHz; DMSO-d6; TMS) δ 9.35 (s, 1H), 7.19 (d, 

J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 5.34 (s, 2H), 3.73 (s, 3H), 2.58 (s, 3H). 13C 

NMR (100 MHz; DMSO-d6; TMS): δ 160.07, 159.09, 157.85, 147.41, 141.11, 139.78, 

128.53, 127.85, 122.00, 114.66, 55.55, 46.53, 23.62. HRMS (m/z): [M + H]+ calcd for 

C15H14N3O4S, 332.0700; found: 332.0714.  

3.3.47. Ethyl 2-(2-methyl-7-nitro-4-oxothieno[3,2-d]pyrimidin-3(4H)-yl)acetate 

(10a). Compound 10a was prepared by reacting 6a (211 mg, 1.0 mmol) with ethyl 

bromoacetate (0.2 mL, 1.8 mmol) according to method D as a white solid (134 mg, 45% 

yield), mp 145-147 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.36 (s, 1H), 5.00 (s, 

2H), 4.20 (q, J = 7.3 Hz, 2H), 2.61 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz; 

DMSO-d6; TMS): δ 167.96, 159.86, 157.22, 147.55, 141.22, 140.01, 121.31, 62.14, 

46.06, 23.05, 14.44. HRMS (m/z): [M + H]+ calcd for C11H12N3O5S, 298.0492; found: 

298.0498. 

3.3.48. tert-Butyl 2-(2-methyl-7-nitro-4-oxothieno[3,2-d]pyrimidin-3(4H)-

yl)acetate (10b). Compound 6a (211 mg, 1.0 mmol) was reacted with tert-butyl 2-

chloroacetate (0.26 mL, 1.8 mmol) to obtain 10b as a white solid (195 mg, 60% yield), 

mp 190-193 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.36 (s, 1H), 4.91 (s, 2H), 2.58 

(s, 3H), 1.44 (s, 9H). 13C NMR (100 MHz; DMSO-d6; TMS): δ167.02, 159.81, 157.21, 

147.51, 141.20, 139.98, 121.34, 83.08, 46.50, 28.06, 23.46. HRMS (m/z): [M + H]+ 

calcd for C13H16N3O5S, 326.0805; found: 326.0804. 



	 35	

3.3.49. 2-(2-Methyl-7-nitro-4-oxothieno[3,2-d]pyrimidin-3(4H)-yl)acetic acid 

(10c). Compound 10a (100 mg, 0.3 mmol) was hydrolyzed to obtain 10c (52 mg, 65% 

yield) as a white solid by following procedure described for preparation of 27, mp 225-

228 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 13.52 (s, 1H), 9.35 (s, 1H), 4.92 (s, 

2H), 2.60 (s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 169.31, 159.93, 157.24, 

147.51, 141.19, 139.88, 121.38, 45.96, 23.48. HRMS (m/z): [M + H]+ calcd for 

C9H8N3O5S, 270.0179; found: 270.0173. 

3.3.50. 2-(2-Methyl-7-nitro-4-oxothieno[3,2-d]pyrimidin-3(4H)-yl)-N-

phenylacetamide (10d).52 A mixture of compound 10c (269 mg, 1.0 mmol), EDC (211 

mg, 1.1 mmol), HBTU (417 mg, 1.1 mmol) and triethylamine (0.28 mL, 2.0 mmol) in 

dichloromethane was stirred for 30 min, then aniline (0.15 mL, 1.5 mmol) was added. 

Upon complete conversion of starting material, the reaction mixture was diluted with 

water and subsequently extracted with ethyl acetate. Combined organic layers were 

dried over MgSO4 and evaporated. Crude product was purified using dry loading 

method and dichloromethane/methanol mobile phase on flash chromatography to 

obtain 10d as a light yellow solid (121 mg, 35% yield), mp 260-262 °C. 1H NMR (400 

MHz; DMSO-d6; TMS) δ 10.51 (s, 1H), 9.36 (s, 1H), 7.58 (d, J = 7.4 Hz, 2H), 7.33 (t, 

J = 7.4 Hz, 2H), 7.08 (t, J = 4.3 Hz, 1H), 5.04 (s, 2H), 2.63 (s, 3H). 13C NMR (100 MHz; 

DMSO-d6; TMS): δ 165.22, 160.51, 157.42, 147.57, 141.20, 139.88, 138.95, 129.38, 

124.18, 121.41, 119.59, 47.55, 23.72. HRMS (m/z): [M + H]+ calcd for C15H13N4O4S, 

345.0652; found: 345.0626. 

3.3.51. 2-Methyl-3-(2-morpholino-2-oxoethyl)-7-nitrothieno[3,2-d]pyrimidin-

4(3H)-one (10e). Compound 10e was prepared as per the procedure described for 10d 

using compound 10c (269 mg, 1.0 mmol) and morpholine (0.13 mL, 1.5 mmol) as 

starting materials. Purified product was obtained as a white solid (112 mg, 33% yield), 
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mp 239-241 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.35 (s, 1H), 5.15 (s, 2H), 3.68 

(t, J = 3.3 Hz, 2H), 3.60 (t, J = 4.6 Hz, 4H), 3.47 (t, J = 4.1 Hz, 2H), 2.53 (s, 3H). 13C 

NMR (100 MHz; DMSO-d6; TMS): δ 164.81, 160.42, 157.29, 147.52, 141.20, 139.69, 

121.39, 66.51, 45.49, 45.30, 23.50. HRMS (m/z): [M + H]+ calcd for C13H15N4O5S, 

339.0758; found: 339.0739. 

3.3.52. 2-Methyl-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-7-nitrothieno[3,2-

d]pyrimidin-4(3H)-one (10f). Compound 10f was prepared as per the procedure 

described for 10d, using compound 10c (269 mg, 1.0 mmol) and N-methyl piperazine 

(0.17 mL, 1.5 mmol) as starting materials. Purified product was obtained as a white 

solid (141 mg, 40% yield), mp 140-143 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 

9.34 (s, 1H), 5.14 (s, 2H), 3.57 (t, J = 4.7 Hz, 2H), 3.48 (t, J = 5.0 Hz, 2H), 2.52 (s, 3H), 

2.41 (t, J = 4.7 Hz, 2H), 2.30 (t, J = 4.7 Hz, 2H), 2.22 (s, 3H). HRMS (m/z): [M + H]+ 

calcd for C14H18N5O4S, 352.1074; found: 352.1074. 

3.3.53. 4-Chloro-2-methyl-7-nitrothieno[3,2-d]pyrimidine (11a).53 Compound 6a 

(211 mg, 1.0 mmol) was added into a round bottom flask containing phosphorus 

oxychloride (20 mL, 215 mmol). Reaction mixture was stirred under reflux for 18 h. 

Once starting material was fully converted, the solution was transferred portion wise 

into ice water. The mixture was neutralized with aqueous solution of NaHCO3 and 

extracted 3 times with ethyl acetate. Organic layers were combined, dried over 

anhydrous MgSO4 and evaporated. Resulting crude product was purified by flash 

chromatography (dichloromethane/methanol 93:3) to obtain a pale yellow solid (92 mg, 

40% yield), mp 164-165 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.69 (s, 1H), 2.81 

(s, 3H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 156.32, 152.18, 147.02, 140.67, 

140.63, 135.54, 115.89. HRMS (m/z): [M + H]+ calcd for C7H5ClN3O2S, 229.9786; found: 

229.9765. 
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3.3.54. 2-Methyl-7-nitro-N-phenylthieno[3,2-d]pyrimidin-4-amine (11b).53 

Compound 11a (50 mg, 0.2 mmol) and aniline (0.09 mL, 1.0 mmol) were added into a 

microwave tube. The mixture was kept in a single cavity microwave initiator, and the 

reaction was carried out at 150 °C for 50 min. The reaction mass was diluted with a 

mixture of ethyl acetate/water. Organic layer was separated, dried over MgSO4, and 

evaporated. Resulting crude product was purified by flash chromatography 

(dichloromethane/methanol 99:1) to obtain 11b as a white solid (20 mg, 35% yield), 

mp 202-205 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 10.01 (s, 1H), 9.36 (s, 1H), 

7.78 (d, J = 7.7 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.17 (t, J = 7.7 Hz, 1H), 2.57 (s, 3H). 

13C NMR (100 MHz; DMSO-d6; TMS): δ 165.72, 155.54, 151.79, 141.17, 139.10, 

138.91, 129.19, 124.76, 123.11, 113.89, 26.31. HRMS (m/z): [M + H]+ calcd for 

C13H11N4O2S, 287.0597; found: 287.0621. 

3.3.55. 4-(2-Methyl-7-nitrothieno[3,2-d]pyrimidin-4-yl)morpholine (11c). 

Compound 11c was prepared as per the procedure described for 11b, using 11a (50 mg, 

0.2 mmol) and morpholine (0.09 mL, 1.0 mmol) as starting materials. Target compound 

was isolated as a pale yellow solid (25 mg, 45% yield), mp 182-185 °C. 1H NMR (400 

MHz; DMSO-d6; TMS) δ 9.40 (s, 1H), 3.93 (t, J = 5.1 Hz, 4H), 3.76 (t, J = 5.1 Hz, 4H), 

2.53 (s, 3H). HRMS (m/z): [M + H]+ calcd for C11H13N4O3S, 281.0703; found: 281.0724. 

3.3.56. (E)-3-Benzyl-2-(4-fluorostyryl)-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one 

(12a). Reaction of 9a (100 mg, 0.3 mmol) and 4-fluorobenzaldehyde (0.16 mL, 1.5 

mmol) was carried out according to method C to obtain 12a as a brown solid (27 mg, 

22% yield), mp 192-195 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.40 (s, 1H), 7.93 

(d, J = 15.1 Hz, 1H), 7.78 (q, J = 3.4 Hz, 2H), 7.40 – 7.22 (m, 8H), 5.70 (s, 2H). HRMS 

(m/z): [M + H]+ calcd for C21H15FN3O3S, 408.0813; found: 408.0815. 
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3.3.57. (E)-4-Chloro-2-(4-fluorostyryl)-7-nitrothieno[3,2-d]pyrimidine (12b). 

Compound 8f (100 mg, 0.3 mmol) was reacted with phosphorous oxychloride (15 mL, 

161 mmol) to afford 12b using procedure described for the preparation of 11a as a 

yellow solid (72 mg, 72% yield), mp 256-258 °C. 1H NMR (400 MHz; DMSO-d6; TMS) 

δ 9.69 (s, 1H), 8.06 (d, J = 16.1 Hz, 1H), 7.95 – 7.91 (m, 2H), 7.42 (d, J = 16.0 Hz, 1H), 

7.28 (t, J = 8.9 Hz, 2H). 13C NMR (100 MHz; DMSO-d6; TMS): δ 162.34 (d, J = 247.8 

Hz), 162.08, 153.90, 151.96, 143.35, 140.01, 138.23, 131.15 (d, J = 2.9 Hz), 129.81 (d, 

J = 8.6 Hz), 126.55, 125.14, 115.33 (d, J = 21.7 Hz). HRMS (m/z): [M + H]+ calcd for 

C14H8ClFN3O2S, 336.0004; found: 335.9991. 

3.3.58. (E)-4-(2-(4-fluorostyryl)-7-nitrothieno[3,2-d]pyrimidin-4-yl)morpholine 

(12c). Compound 12b (67 mg, 0.2 mmol) and morpholine (0.09 mL, 1.0 mmol) were 

reacted according to the procedure described for 11b to afford 12c as a white solid (25 

mg, 32% yield), mp 245-248 °C. 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.43 (s, 1H), 

7.93 (d, J = 16.3 Hz, 1H), 7.82 (dd, J = 8.3 Hz, 3.2 Hz, 2H), 7.25 (t, J = 8.3 Hz, 2H), 

7.15 (d, J = 7.8 Hz, 1H), 4.02 (t, J = 8.9 Hz, 4H), 3.81 (t, J = 3.8 Hz, 4H). 13C NMR 

(100 MHz; DMSO-d6; TMS): δ 162.98 (d, J = 247.3 Hz), 161.71, 157.63, 152.85, 

141.60, 137.98, 136.81, 132.77 (d, J = 3.3 Hz), 130.28 (d, J = 8.2 Hz), 128.08, 116.25 

(d, J = 21.6 Hz), 113.05, 66.33, 46.30. HRMS (m/z): [M + H]+ calcd for C18H16FN4O3S, 

387.0922; found: 387.0938. 

3.3.59. 2-Methyl-8-nitro-4H-benzo[d][1,3]oxazin-4-one (16). Intermediate 16 was 

prepared using commercially available methyl 2-amino-3-nitrobenzoate 13 (196 mg, 

1.0 mmol) and acetic anhydride according to method A as an orange solid (180 mg, 87% 

yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 8.12 (d, J = 7.9 Hz, 1H), 8.08 (d, J = 

8.0 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 2.05 (s, 3H). 
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3.3.60. 2-Methyl-4H-pyrido[2,3-d][1,3]oxazin-4-one (17).54 Intermediate 17 was 

prepared using commercially available methyl 2-aminonicotinate 14 (152 mg, 1.0 

mmol) and acetic anhydride according to method A as a white solid (105 mg, 65% 

yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 8.22 (dd, J = 4.9 Hz, 1.7 Hz, 1H), 8.15 

(dd, J = 7.8 Hz, 1.8 Hz, 1H), 6,70 (dd, J = 7.7 Hz, 4.9 Hz, 1H), 3.83 (s, 3H). 

3.3.61. 8-Fluoro-2-methyl-4H-benzo[d][1,3]oxazin-4-one (18). Intermediate 18 was 

prepared using commercially available methyl 2-amino-3-fluorobenzoate 15 (169 mg, 

1.0 mmol) and acetic anhydride according to method A as a white solid (143 mg, 80% 

yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 7.93 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 

8.0 Hz, 1H), 7.58 (t, J = 7.9 Hz, 1H), 2.43 (s, 3H). 

3.3.62. Methyl 3-acetamidothiophene-2-carboxylate (22a). Intermediate 22a was 

prepared using commercially available methyl 3-aminothiophene-2-carboxylate 19 

(157 mg, 1.0 mmol) and acetic anhydride (20 mL) according to method A as a white 

solid (167 mg, 84% yield). 1H NMR (400 MHz; CDCl3; TMS) δ 9.99 (s, 1H), 7.93 (d, 

J = 5.4 Hz, 1H), 7.89 (d, J = 5.4 Hz, 1H), 3.84 (s, 3H), 2.17 (s, 3H). 

3.3.63. Methyl 3-acetamidofuran-2-carboxylate (22b).55 Intermediate 22b was 

prepared using commercially available methyl 3-aminofuran-2-carboxylate 20 (141 mg, 

1.0 mmol) and acetic anhydride (20 mL) according to method A as a white solid (119 

mg, 65% yield). 1H NMR (400 MHz; CDCl3; TMS) δ 12.66 (s, 1H), 7.85 (s, 1H), 6.82 

(s, 1H), 2.64 (s, 3H), 2.33 (s, 3H). 

3.3.64. Methyl 4-acetamidothiophene-3-carboxylate (22c). Intermediate 22c was 

prepared using commercially available methyl 4-aminothiophene-3-carboxylate 21 

(157 mg, 1.0 mmol) and acetic anhydride (20 mL) according to method A as a white 

solid (165 mg, 83% yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 9.83 (s, 1H), 8.35 

(d, J = 3.5 Hz, 1H), 7.90 (d, J = 3.6 Hz, 1H), 3.85 (s, 3H), 2.13 (s, 3H). 
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3.3.65. Methyl 3-propionamidothiophene-2-carboxylate (22e).56 Methyl 3-

aminothiophene-2-carboxylate 19 (157 mg, 1.0 mmol) was stirred with triethylamine 

(0.21 mL, 1.5 mmol) and propionyl bromide (0.11 mL, 1.2 mmol) in dichloromethane 

at room temperature for 4 h. The mixture was then neutralized with 1 molar aqueous 

HCl solution and extracted with dichloromethane three times. Combined organic layers 

were dried over anhydrous MgSO4 and concentrated under vacuum. Product was 

isolated as a white solid (171 mg, 80% yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 

10.02 (s, 1H), 7.97 (d, J = 5.4 Hz, 1H), 7.90 (d, J = 5.4 Hz, 1H), 3.84 (s, 3H), 2.46 (t, J 

= 7.5 Hz, 2H), 1.11 (t, J = 7.5 Hz, 3H). 

3.3.66. Methyl 3-butyramidothiophene-2-carboxylate (22f). Intermediate 22f was 

prepared using methyl 3-aminothiophene-2-carboxylate 19 (157 mg, 1.0 mmol) and 

butanoyl bromide (0.12 mL, 1.2 mmol) as starting materials following procedure 

described for the preparation of 22e. Isolated product was white solid (193 mg, 85% 

yield). 1H NMR (400 MHz; DMSO-d6; TMS) δ 10.11 (s, 1H), 8.03 (d, J = 5.3 Hz, 1H), 

7.89 (d, J = 5.3 Hz, 1H), 3.83 (s, 3H), 2.76 (t, J = 7.4 Hz, 2H), 1.51 – 1.37 (m, 2H), 

0.91 (t, J = 7.4 Hz, 3H). 

3.3.67. Methyl 3-benzamidothiophene-2-carboxylate (22g). Intermediate 22g was 

prepared using methyl 3-aminothiophene-2-carboxylate 19 (157 mg, 1.0 mmol) and 

benzoyl bromide (0.14 mL, 1.2 mmol) as starting materials by procedure described for 

the preparation of 22e. Isolated product was white solid (214 mg, 82% yield). 1H NMR 

(400 MHz; DMSO-d6; TMS) δ 11.02 (s, 1H), 8.12 (d, J = 5.3 Hz, 1H), 8.00 (d, J = 5.3 

Hz, 1H,), 7.96 (d, J = 7.1 Hz, 2H), 7.71 – 7.61 (m, 3H), 3.89 (s, 3H). 

3.3.68. Methyl 3-acetamido-4-methylthiophene-2-carboxylate (22h). Intermediate 

22h was prepared using commercially available methyl 3-amino-4-methylthiophene-2-

carboxylate 24 (171 mg, 1.0 mmol) and acetic anhydride as starting materials according 
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to method A as a white solid (160 mg, 75% yield). 1H NMR (400 MHz; CDCl3; TMS) 

δ 9.62 (s, 1H), 7.51 (s, 1H), 3.75 (s, 3H), 2.03 - 2.02 (m, 6H). 

3.3.69. 3-Acetamidofuran-2-carboxamide (23b).57 Intermediate 23b was prepared 

using 22b (168 mg, 1.0 mmol) and ammonium hydroxide aqueous solution (30 mL) 

according to method A as a white solid (103 mg, 62% yield). 1H NMR (400 MHz; 

DMSO-d6; TMS) δ 9.66 (s, 1H), 7.77 (s, 1H), 7.70 (d, J = 1.7 Hz, 1H), 7.55 (s, 1H), 

7.22 (d, J = 1.7 Hz, 1H), 2.10 (s, 3H). 

3.3.70. 4-Acetamidothiophene-3-carboxamide (23c).46 Intermediate 23c was prepared 

using 22c (199 mg, 1.0 mmol) and ammonium hydroxide aqueous solution (30 mL) 

according to method A as a white solid (74 mg, 40% yield). 1H NMR (400 MHz; 

DMSO-d6; TMS) δ 11.00 (s, 1H), 8.27 (d, J = 3.4 Hz, 1H), 8.14 (s, 1H), 7.87 (d, J = 3.3 

Hz, 1H), 7.61 (s, 1H), 2.08 (s, 3H). 

3.4. Minimum Inhibitory Concentrations (MICs) of Thienopyrimidinone 

Analogues against C. difficile Strains 

Following the guidelines defined by the Clinical and Laboratory Standards Institute 

(CLSI),58 Clostridium difficile strains were grown anaerobically on brain heart infusion 

supplemented (BHIS) agar plates (Brain heart infusion, BD, supplemented with yeast 

extract, Vitamin K1 and Hemin, Sigma) at 37 °C for 48 h. Afterwards, a bacterial 

suspension of ~105 CFU/mL was prepared in BHIS broth and seeded in 96-well plates 

containing serial dilutions of the compounds and controls. Plates were then incubated 

anaerobically at 37 °C for 48 h. Reported MICs are the minimum concentration of each 

compound at which inhibition of the bacterial growth could be visually observed.59 The 

MBC of the most potent compound, 8f, was determined by subculturing 8f-inhibited 

bacteria on a drug-free BHIS agar plates and incubated anaerobically at 37 °C for 24 h. 
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Reported MBC is the concentration at which 99.9% of the initial bacterial count was 

eradicated.60, 61  

3.5. Time-kill assay of 8f against C. difficile 

An 18-20 h culture of C. difficile ATCC BAA 1870 was diluted 1:50 in fresh BHIS 

broth to achieve a starting concentration of 106 CFU/mL. The bacterial suspension was 

mixed with 8 X MIC of 8f, vancomycin, fidaxomicin or DMSO in triplicates. Bacterial 

concentration was measured at the indicated time points by serially diluting samples 

from each bacterial suspension followed by culturing, in duplicates on BHIS agar plates. 

CFU were counted after anaerobic incubation for 24 h at 37 °C.62  

3.6. In Vitro Antimicrobial Evaluation of Thienopyrimidinone Analogues against 

Normal Microflora 

With slight modification, CLSI and previous reports were followed in order to 

determine the MICs of the most active compounds against human microflora.63, 64 

Bacteria were first grown for 48 hours at 37 °C, anaerobically using BHIS agar for 

Bifidobacterium and in 5% CO2 using MRS agar plate for Lactobacillus. Approximately 

a 105 CFU/mL suspension was prepared (in BHIS broth for Bifidobacterium or in MRS 

broth for Lactobacillus) for each strain and seeded in 96-well plates. Compounds were 

added at the required concentrations in the 96-well plates and incubated as mentioned 

for each species for 48 hours at 37 °C before recording the MIC values. 

For Escherichia coli and Enterobacter cloacae, the activity of the compounds was 

tested in accordance with the CLSI.63 Briefly, bacteria were grown on tryptic soy agar 

(TSA) plates for 16-20 h at 37 °C. A bacterial suspension was prepared in phosphate 

buffered saline (PBS), matched to the turbidity of a 0.5 McFarland standard solution 

and diluted in tryptic soy broth (TSB) to achieve a bacterial concentration of ~ 105 

CFU/mL. The final bacterial suspension was incubated in 96-well plates with serial 
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dilutions of the compounds and the controls for 16-20 h at 37 °C. MICs were defined 

as the lowest concentration of each agent that inhibited the bacterial growth.65, 66  

3.7. In Vitro Cytotoxicity Analysis of Thienopyrimidinone Analogues 

The most potent compounds were selected for further testing for their cytotoxicity 

against three different cell lines; human colon colorectal adenocarcinoma (Caco-2), 

human ileocecal adenocarcinoma (HRT-18) and African green monkey kidney cells 

(Vero) as described previously.67, 68 Briefly, cells were grown in T75 flasks at 37 °C in 

5% CO2 atmosphere till they reached ~90% confluency using the growth media 

recommended by the supplier. Cells were transferred to cell culture-treated 96-well 

plates, incubated at 37 °C in 5% CO2 and allowed to reach confluency. Next, the growth 

media were replaced with fresh ones containing the indicated concentrations of the 

compounds or DMSO (as a negative control) in triplicates and incubated at 37 °C in 5% 

CO2 for 2 h. After incubation, media were removed, and the cells were washed before 

the addition of 20% MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium). Added MTS was incubated with the cells for 

additional 4 h at 37 °C in 5% CO2, then the absorbance for each well was recorded as 

an optical density at 490 nm. Data is presented as percentage cell viability as compared 

to the DMSO treated cells. 

3.8. Determination of the Aqueous Solubility of Thienopyrimidinone Analogues 

Solution at a concentration of 1 mg/mL was obtained by dissolving interested 

compound in methanol. The stock solution was passed through a 0.45-micron nylon 

membrane filter. Samples at different concentrations (1 μg/mL, 5 μg/mL, 50 μg/mL, 

and 100 μg/mL) were prepared and loaded onto HPLC. Isocratic mobile phase 

(acetonitrile/water 50:50) was used and a flow rate as 1.0 mL/min. Standard curve was 

achieved by plotting AUC (area under the curve) versus concentration at 254 nm. To 
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prepare saturated solution, 3 mg of target compound was added into an Eppendorf tube 

containing 3 mL PBS solution. The mixture was agitated for 24 h at 25 °C and 

centrifuged for 3 min at 16000 rpm. A mixture of 300 μL of supernatant and 300 μL 

acetonitrile was prepared. Absorbance was measured on HPLC, and solubility was 

calculated from absorbance, standard curve and dilution factor. 

3.9. Assessment of the Stability of Thienopyrimidinone Analogues in Simulated 

Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF) 

Stability of target compounds in SGF (pH = 1.6) and SIF (pH = 6.0) was evaluated 

following reported procedure with modification. Stock solutions at concentration of 50 

μg/mL were prepared with methanol. Mixture of 200 μL of stock solution and 800 μL 

SGF/SIF was stirred vigorously and incubated at 37 °C. After 4 h and 8 h incubation, 

samples were loaded onto HPLC and eluted using isocratic mobile phase 

(acetonitrile/water 50:50) at a flow rate of 1.0 mL/min. The remaining percentage at 

each injection time point was calculated as AUC (after incubation)/AUC (before 

incubation) at λ 254 nm.69  

3.10. In Silico PAINS Analysis 

All the synthesized target compounds were subjected to PAINS filters by using a 

KNIME (v3.74, KNIME GmbH, Konstanz, Germany) workflow.70 Molecular formula 

strings of target compounds were manually input into the workflow, and the output file 

for the run indicated no PAINS were found. 
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Chapter IV. Results and Discussion 
4.1. Chemistry 

To pursue more potent C. difficile inhibitor by exploring chemical space around 

thieno[3,2-d]pyrimidin-4(3H)-one scaffold, target compounds were obtained according 

to synthetic routes described in schemes 1- 6. 

4.1.1. Synthesis of Fused Pyrimidinone Derivatives 

Fused pyrimidinone derivatives were synthesized starting from amino and methyl ester 

substituted aromatic/heteroaromatic intermediates (Scheme 1). Acetylation of 

commercially available chemicals 13-15 and 19-21 was performed using acetic 

anhydride, and subsequent treatment of intermediates with ammonium hydroxide to 

obtain compounds 2-4 and 7a.34 Hydrogenation of the nitro group of 2 yielded 5.42 The 

reaction conditions used for the preparation of 7b and 7c required an alternate strategy 

due to varying reactivity of starting materials. As illustrated, intermediates 23b and 23c 

were prepared according to the procedure used for the synthesis of compound 2 and 

heated in a mixture of NaOH, water and methanol to obtain the cyclized compounds 7b 

and 7c.45 The nitro group was introduced on 7a-7c by treating with fuming nitric acid 

and concentrated sulfuric acid mixture to obtain nitro derivatives 6a-6c.71   
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Scheme 1. Reagents and conditions: (a) acetic anhydride, 13 (for 16), 14 (for 17), 15 

(for 18), 19 (for 22a), 20 (for 22b), 21 (for 22c), rt, 12-24 h, 65-85%; (b) 30% NH4OH, 

16 (for 2), 17 (for 3), 18 (for 4), 22a (for 7a), 22b (for 23b), 22c (for 23c), rt, 6-8 h, 62-

70%; (c) H2/Pd/C, MeOH, 50 psi, rt, 8 h, 70%; (d) Aq. NaOH, MeOH, 23b (for 7b), 

23c (for 7c), reflux, 4-6 h, 35-40%; (e) HNO3, conc. H2SO4, 0 °C - rt, 4-12 h, 40-82%.  

4.1.2. Synthesis of Thienopyrimidinone Derivatives 

To investigate the role of C2-methyl group, 7d-7g with C2-H, -ethyl, -propyl, and -

phenyl substituents were prepared from 19 and 22e-22g, respectively.47, 72 The nitrated 

derivatives 6d-6f were prepared from 7d-7f by following the same method used for the 

preparation of 6a.71 Target compound 6g was obtained from nitration of 7g wherein two 
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nitro groups (C7 of the bicyclic scaffold and meta-position of the C2-phenyl substituent) 

were introduced in the same reaction. To analyze the role of C7-nitro group, compounds 

with C7-methyl group (7h and 7i) were synthesized from commercially available 24 

over two-steps for 7h and one-step for 7i (Scheme 2). 

 

Scheme 2. Reagents and conditions: (a) formamide, rt, 6-8 h, 60-65%; (b) HNO3, conc. 

H2SO4, 7e (for 6e), 7f (for 6f), 7g (for 6g), 0 °C - rt, 6-8 h, 50-70%. (c) triethyl amine, 

DCM, propionyl bromide (for 22e), butanoyl bromide (for 22f), benzoyl chloride (for 

22g), rt, 4-8 h, 80-85%; (d) 30% NH4OH, 22e (for 7e), 22f (for 7f), 22g (for 7g), 22h 

(for 7h), rt, 6-8 h, 28-60%; (e) acetic anhydride, rt, 14 h, 75%.  

4.1.3. Synthesis of C2-Styryl Derivatives 

To pursue more potent compounds, lead 6a was condensed with (un)substituted 

aromatic/heteroaromatic aldehydes using microwave conditions to obtain C2-styryl 

derivatives 8a-8n (Scheme 3). 73, 74 
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Scheme 3. (a) benzaldehyde (for 8a), furfural (for 8b), 2-thiophenecarboxalehyde (for 

8c), 4-formylbenzoic acid (for 8d), 5-formyl-2-furoic acid (for 8e), 4-

fluorobenzaldehyde (for 8f), 2-fluorobenzaldehyde (for 8g), 3-fluorobenzaldehyde (for 

8h), 4-nitrobenzaldehyde (for 8i), 4-cyanobenzaldehyde (for 8j), 4-chlorobenzaldehyde 

(for 8k), 4-ethynylbenzaldehyde (for 8l), 4-hydroxylbenzaldehyde (for 8m), 4-

methoxybenzaldehyde (for 8n), AcOH, MW, 180 °C, 5-6 h, 20-37%. 

4.1.4. Synthesis of N3-Substituted Derivatives 

A wide range of substituents were installed at N3-position of 6a as shown in Scheme 4. 

For example, 9a-9h were prepared by reacting 6a with various (un)substituted 

phenylalkyl halides in the presence of potassium carbonate in DMF.39 To prepare 

analogues with N3-ester (11a and 11b), -carboxylic acid (11c), and -amide (11d-11f) 

substituents, 6a was subjected to alkylation using respective halides in the presence of 

potassium carbonate and DMF to obtain 11a and 11b.39 The ester 11a was hydrolyzed 

in the presence of lithium hydroxide to obtain 11c, and the resulting carboxylic acid 

was coupled with aromatic/aliphatic amines to yield  11d-11f.52  
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Scheme 4. (a) benzyl bromide (for 9a), (2-bromoethyl)benzene (for 9b), 1-bromo-3-

phenylpropane (for 9c), 4-nitrobenzyl bromide (for 9d), 2-nitrobenzyl bromide (for 9e), 

3-nitrobenzyl bromide (for 9f), 4-cyanobenzyl bromide, (for 9g), 4-methoxybenzyl 

bromide (for 9h), ethyl bromoacetate (for 10a), tert-butyl 2-chloroacetate (for 10b), 

K2CO3, DMF, rt, 8-12 h, 42-60%; (b) LiOH, THF, H2O, rt, 8-10 h, 65-87%; (c) aniline 

(for 10d), morpholine (for 10e), N-methyl piperazine (for 10f), EDC, HBTU, 

triethylamine, DCM, rt, 6h, 33-40%. 

4.1.5. Synthesis of C4-Substituted Analogues 

As depicted in Scheme 5, compound 11a was prepared from the reaction of 6a with 

phosphorus oxychloride. The C4-chloro group was then nucleophilically displaced by 

aniline or morpholine under microwave condition to obtain 11b or 11c.53 
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Scheme 5. (a) phosphorus oxychloride, reflux, 18 h, 40%, (b) aniline (for 11b), 

morpholine (for 11c), DMF, MW, 150 °C, 50-70 min, 35-45%. 

4.1.6. Synthesis of Disubstituted Analogues of Thienopyrimidinone Core 

Target compound 12a with C2- and N3-disubstitution was prepared from the reaction 

of 9a and 4-fluorobenzaldehyde. The 2,4-disubstituted compound 12b was obtained by 

treating 8f with phosphorus oxychloride, which upon nucleophilic substitution by 

morpholine led to 12c as shown in Scheme 6. 

 

Scheme 6. (a) 4-fluorobenzaldehyde, AcOH, MW, 180 °C, 4 h, 22%, (b) phosphorus 

oxychloride, reflux, 18 h, 72%; (c) morpholine, DMF, MW, 150 °C, 1 h, 32%. 

4.2. Elucidation of Regioisomers from Nitration Reaction 

Variety of techniques, including X-ray crystallography, 1-D (1H and 13C) and 2-D 

(HSQC and HMBC) NMR analyses, were employed to determine the regioselectivity 

of products obtained from the nitration reaction. We hypothesized that the position of 

the nitro group in representative compound 6a would be at C7 instead of C6. This 

hypothesis was tested initially based on determination of the single X-ray crystal 
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structure of 6a-derived analogue 10b, and supported by 1H and 13C NMR chemical shifts 

analyses. Unambiguous assignment of regioisomer 11b was accomplished by solving 

its single X-ray crystal structure (Figure 5).  

 

Figure 5. Crystal structure of compound 10b (CCDC 1884213). 

The C6-thiophene proton chemical shift of 6a is 9.30 ppm and 10b is 9.36 ppm (Figure 

6 and Figure 7), and the thiophene C6 chemical shift of 6a and 10b are 138.99 ppm 

and 139.98 ppm (Figure 8 and Figure 9), respectively. These similar chemical shifts 

provide evidence for identical regioisomerism within compounds 6a and 10b. There is 

no distinct HMBC correlation present to differentiate the nitro group’s position on the 

furan ring of compound 6b (Figure 10), but reactivity of the starting material 7b is 

similar to the sulfur-isostere analogue 7a, from which compound 6a was derived. 

Therefore, we believe that the nitro group is at 7-position in 6b as well. HMBC spectra 

of 7b is shown in supporting information (Figure 11).  
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Figure 6. 1H NMR spectra of 6a. 
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Figure 7. 1H NMR spectra of 10b. 
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Figure 8. 13C NMR spectra of 6a. 
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Figure 9. 13C NMR spectra of 10b. 
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Figure 10. HMBC spectrum of 6b. 

 

Figure 11. HMBC spectrum of 7b. 

Both HSQC and HMBC experiments were performed to investigate correlations 

between carbons and protons within compound 7c, which was the starting material for 
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the nitration reaction to generate 6c. The correlation between individual carbon atom 

and the proton attached to it was evidenced by the HSQC spectrum of 7c (Figure 12). 

Additional HMBC analysis of 7c shows four HMBC correlations for the hydrogen at 

5-position, and three HMBC correlations for the hydrogen at 7-position as expected 

(Figure 13). Subsequent HMBC spectrum of compound 6c shows four HMBC 

correlations for a single thiophene proton (Figure 14). These observations lead to the 

conclusion that the nitration reaction afforded the 7-nitro analogue as the exclusive 

regioisomer.  

 

Figure 12. HSQC spectrum of 7c. 
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Figure 13. HMBC spectrum of 7c. 

 

Figure 14. HMBC spectrum of 6c. 
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For analogues 6d – 6g, which are structurally analogous to 6a, we observed that the 

thiophene proton (9.31 – 9.41 ppm) and the carbon atom (138.89 – 139.21 ppm) with 

proton attached, have very similar chemical shift values compared to compound 6a (1H 

9.30 ppm, 13C 138.99 ppm) indicating the presence of nitro group at 7-position (Table 

3). 

Table 3. 1H and 13C Chemical shift of compound 6a, 6d – 6g, and 10b 

Compound Structure 
Chemical shift (ppm) 

1H 13C 

10b 

 

9.36 139.98 

6a 

 

9.30 138.99 

6d 

 

9.36 139.21 

6e 

 

9.31 138.89 

6f 

 

9.31 138.92 

6g 

 

9.41 139.77 
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4.3. Structure-Activity Relationship 

An in vitro antibacterial screening protocol was designed to identify compounds with 

potent inhibitory activity toward C. difficile, and minimal effect on normal human 

microflora and mammalian cells. To achieve this goal, we tested target compounds 

against two pathogenic strains of C. difficile (ATCC BAA 1870 and ATCC 43255) as 

shown in Tables 1-5. MIC values (µM and µg/mL) are used to describe antibacterial 

activities of the compounds and used for the interpretation of SAR data. An initial SAR 

study was focused on elucidation of the role of nitro substituent on hit-to-lead scaffolds 

6a-6c toward C. difficile inhibition as shown in Table 1. Des-nitro analogues of 6a-6c 

gave 7a (MIC >770/385 µM), 7b (MIC >852/852 µM), and 7c (MIC = 192/768 µM) 

with a substantial loss of anti-C. difficile potency. Other des-nitro derivatives such as 

7d (MIC = 420/840 µM), 7g (MIC >560/>560 µM), 7h (MIC >710/>710 µM), and 7i 

(MIC >770/>770 µM) were also manifested with a loss of potency. These results 

allowed us to conclude the essential role of a nitro substituent at the C7-position. Next, 

we decided to elucidate the contribution of a C2-methyl group on anti-C. difficile 

potency (Table 3). Toward this goal, we prepared and tested C2-desmethyl (6d, MIC = 

20/10 µM), C2-ethyl (6e, MIC = 35/35 µM), C2-propyl (6f, MIC = 67/67 µM) and C2-

meta-nitrophenyl (6g, MIC = 50/50 µM) analogues exhibiting potency comparable to 

that of 6a. Therefore, we hypothesized that further extensions at the C2-position may 

be tolerated while expanding chemical space to obtain potent compounds.  
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Table 4. MICof Compounds with Core Modifications 

Compound Structure 

MIC 

µM (µg/mL) 

ATCC BAA 

1870 
ATCC 43255 

1 

 

335 (64) 335 (64) 

2 

 

312 (64) 156 (32) 

3 

 

>794 (>128) >794 (>128) 

4 

 

>718 (>128) >718 (>128) 

5 

 

>730 (>128) >730 (>128) 

6a 

 

19 (4) 38 (8) 
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6b 

 

41 (8) 41 (8) 

6c 

 

38 (8) 38 (8) 

6d 

 

20 (4) 10 (2) 

6e 

 

35 (8) 35 (8) 

6f 

 

67 (16) 67 (16) 

6g 

 

50 (16) 50 (16) 

7a 

 

>770 (>128) 385 (64) 

7b 

 

>852 (>128) >852 (>128) 
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7c 

 

192 (32) 768 (128) 

7d 

 

420 (64) 840 (128) 

7g 

 

>560 (>128) >560 (>128) 

7h 

 

>710 (>128) >710 (>128) 

7i 

 

>770 (>128) >770 (>128) 

Vancomycin - 0.7 (1) 0.3 (0.5) 

Metronidazole - 0.7 (0.125) 1.5 (0.25) 

Fidaxomicin - 0.1 (0.0625) 0.1 (0.0625) 

Table 5 shows the MICs of C2-styryl analogues. The C2-styryl derivative 8a 

yielded a promising MIC of 13/52 µM. Considering the favorable result, we replaced 

the phenyl ring with isosteres such as furan-2-yl (8b, MIC = 27/27 µM) and thiophen-

2-yl (8c, MIC = 13/13 µM) which suggested the tolerance for these isosteric 

replacements. Next, we prepared carboxy substituted derivatives of 8a and 8b leading 

to 8d (MIC = 46/184 µM) and 8e (MIC >384/>384 µM) with a considerable loss of 

potency. This loss of potency may be attributed to unfavorable interactions with the 
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target and/or poor permeability. On the contrary, 4-fluorophenyl analogue (8f, MIC = 

3/6 µM) showed excellent potency. A fluoro-scan was conducted to identify the most 

favorable position for a fluoro group, which led to 2-fluoro (8g, MIC = 6/12 µM) and 

3-fluoro (8h, MIC = 13/13 µM) analogues. Since 4-fluoro analogue yielded the potent 

MIC value, we explored substitutions of different electron-withdrawing/-donating 

groups at the 4-position. While 4-nitro analogue (8i, MIC = 24/12 µM) gave 

comparable activity, the 4-cyano analogue (8j, MIC >197/>197 µM) proved 

detrimental. The 4-chloro analogue (8k, MIC = 6/6 µM) being a classical isostere of 4-

fluoro group retained potency similar to that observed for the 4-fluoro analogue. 

Retention of potency by 4-acetylene derivative (8l, MIC = 6/12 µM) indicated a 

tolerance for the conformationally rigid acetylene group. Similar to the electron-

withdrawing groups, electron-donating groups also showed favorable potency as 

exemplified by 4-hydroxy (8m, MIC = 26/13 µM) and 4-methoxy (8n, MIC = 12/12 

µM) analogues. 

Table 5. MIC of Compounds with C2 Substitutions 

Compound Structure 

MIC µM (µg/mL) 

ATCC 

BAA 1870 

ATCC 

43255 

8a 

 

13 (4) 52 (16) 

8b 

 

27 (8) 27 (8) 
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8c 

 

13 (4) 13 (4) 

8d 

 

46 (16) 184 (64) 

8e 

 

>384 

(>128) 

>384 

(>128) 

8f 

 

3 (1) 6 (2) 

8g 

 

6 (2) 12 (4) 

8h 

 

13 (4) 13 (4) 

8i 

 

24 (8) 12 (4) 
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8j 

 

>197 (>64) 
>197 

(>64) 

8k 

 

6 (2) 6 (2) 

8l 

 

6 (2) 12 (4) 

8m 

 

26 (8) 13 (4) 

8n 

 

12 (4) 12 (4) 

Vancomycin - 0.7 (1) 0.3 (0.5) 

Metronidazole - 0.7 (0.125) 1.5 (0.25) 

Fidaxomicin - 
0.1 

(0.0625) 

0.1 

(0.0625) 

The next SAR included investigation of various N3-substituents in lead 6a as 

shown in Table 6. At the onset, we inserted N3-substituents such as benzyl (9a, MIC = 

7/56 µM), phenylethyl (9b, MIC = 13/13 µM) and phenylpropyl (9c, MIC = 12/12 µM) 
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to investigate the influence of varying linker length and obtained comparable potency 

to that observed for 6a. Based on these analogues, it may be suggested that the binding 

pocket of N3-substituents is located further from the N3-position. Based on the 

favorable MIC values and straightforward derivatization, we chose benzyl analogue 9a 

for further SAR study. Scanning of the nitro group on the benzyl moiety at different 

positions produced 4-nitro (9d, MIC = 6/12 µM), 2-nitro (9e, MIC = 23/23 µM) and 3-

nitro (9f, MIC = 23/23 µM) analogues. Considering favorable contribution of 4-

substituents, we prepared 4-cyano analogue (9g, MIC = 25/50 µM), which showed 4-

fold reduced potency. The electron-donating 4-methoxy analogue (9h, MIC = 24/24 

µM) also suffered a loss of activity compared to 9d. These findings prompted us to 

investigate untapped chemical space around 6a, which led to N3-ethoxycarbonyl 

methylene analogue (10a, MIC = 54/54 µM), N3-tert-butyloxycarbonyl methylene 

analogue (10b, MIC = 49/98 µM), and methylene carboxylic acid (10c, 

MIC >475/>475 µM). This data suggested the tolerance for an ester group at N3-

position. The detrimental effect of a carboxyl group in 10c may be due to poor 

permeability through C. difficile cell membrane and/or unfavorable interaction with the 

target, which is consistent with the activity loss observed for the other carboxylic acid 

analogues 8d, and 8e. Thus, we decided to convert unfavorable carboxyl group to an 

amide by coupling it with an aniline, morpholine, and N-methylpiperazine, respectively, 

to produce 10d (MIC = 46/23 µM), 10e (MIC = 47/94 µM), and 11f (MIC = 91/91 µM) 

with a >5-fold recovery of activity compared to the carboxyl analogue 10c.  
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Table 6. MIC of Compounds with N3 Substitutions 

Compound Structure 

MIC 

µM (µg/mL) 

ATCC BAA 

1870 

ATCC 

43255 

9a 

 

7 (2) 56 (16) 

9b 

 

13 (4) 13 (4) 

9c 

 

12 (4) 12 (4) 

9d 

 

6 (2) 12 (4) 

9e 

 

23 (8) 23 (8) 

9f 

 

23 (8) 23 (8) 

9g 

 

25 (8) 50 (16) 

9h 

 

24 (8) 24 (8) 
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10a 

 

54 (16) 54 (16) 

10b 

 

49 (16) 98 (32) 

10c 

 

>475 (>128) >475 (>128) 

10d 

 

46 (16) 23 (8) 

10e 

 

47 (16) 94 (32) 

10f 

 

91 (32) 91 (32) 

Vancomycin - 0.7 (1) 0.3 (0.5) 

Metronidazole - 0.7 (0.125) 1. 5 (0.25) 

Fidaxomicin - 0.1 (0.0625) 0.1 (0.0625) 

Our next SAR involved expansion of a chemical space around C4-position of 6a, 

which led to synthesis of C4-chloro derivative (11a, MIC = 17/34 µM) as shown in 

Table 7. We noticed that 11a featured a significant change in the scaffold structure 

(transforming sp3-hybridized N3 to sp2-hybridized N3) with increased planarity, and still 

exhibited comparable activity to that of 6a. We took advantage of the ease of 

nucleophilically displacing the C4-chloro with aniline and morpholine to obtain 11b 
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(MIC = 28/14 µM) and (11c, MIC = 14/14 µM) with essentially retention of activity as 

that of 11a. 

Table 7. MIC of Compounds with C4 Substitutions 

Compound Structure 

MIC 

µM (µg/mL) 

ATCC BAA 

1870 

ATCC 

43255 

11a 

 

17 (4) 34 (8) 

11b 

 

28 (8) 14 (4) 

11c 

 

14 (4) 14 (4) 

Vancomycin - 0.7 (1) 0.3 (0.5) 

Metronidazole - 0.7 (0.125) 1.5 (0.25) 

Fidaxomicin - 0.1 (0.0625) 0.1 (0.0625) 

The SAR data gathered so far indicated the favorable contribution of C2-arylidene, 

N3-benzyl and C4-chloro derivatives for C. difficile growth inhibition. Next, we 

decided to combine these structural features into a single molecule to evaluate whether 

additive effect on potency could be achieved (Table 8).  
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Table 8. MIC of Compounds with C2-and N3- or C2- and C4-Disubstitutions 

Compound Structure 

MIC 

µM (µg/mL) 

ATCC BAA 

1870 

ATCC 

43255 

12a 

 

157 (64) 157 (64) 

12b 

 

95 (32) 95 (32) 

12c 

 

166 (64) 166 (64) 

Vancomycin - 0.7 (1) 0.3 (0.5) 

Metronidazole - 0.7 (0.125) 1. 5 (0.25) 

Fidaxomicin - 0.1 (0.0625) 0.1 (0.0625) 

 This has led to the synthesis and testing of C2-, N3-disusbtituted analogue (12a, MIC 

= 157/157 µM) with substantial loss of activity. The C2-, C4-disubstituted analogues 

12b (MIC = 95/95 µM) and 12c (MIC = 166/166 µM) were also proved detrimental. 

This data suggests that the disubstitutions oppose each other’s productive binding 

within respective pockets of the target. Overall summary of the SAR findings is 

depicted in Figure 15. 
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Figure 15. SAR summary of the thienopyrimidinone series of anti-C. difficille agents.  

4.4. Killing kinetics of 8f against C. difficile 

After exploration of the chemical space around lead compound 6a, we sought to 

investigate the killing kinetics of the most potent compound in the series, 8f. The 

minimum bactericidal concentration (MBC) of compound 8f was 6 µM, which is two-

fold higher than its MIC. We concluded that compound 8f is bactericidal, based on the 

fact that the MBC value is lower than 3 X MIC value. To confirm the bactericidal 

activity of compound 8f, we performed a time-kill assay and compared killing kinetics 

of 8f to the standard anti-clostridial drugs, vancomycin and fidaxomicin, at 8 X MIC. 

Interestingly, compound 8f completely eradicated the bacteria in 6 h after incubation as 

opposed to 24 h required for eradication by fidaxomicin (Figure 16). 
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Figure 16. Time-kill assay of compound 8f against C. difficile ATCC BAA 1870. 

4.5. Selectivity of representative compounds against C. difficile over normal cells 

We next investigated the toxicity of representative compounds (6a, 8f, 8g, 8k, 9a, 9c, 

9d and 11c) against human and animal cells. As presented in Figure 17, the cytotoxicity 

of the most potent compounds was tested against three cell lines; human colon 

colorectal adenocarcinoma (Caco-2 cells), human ileocecal adenocarcinoma (HRT-18 

cells) and African green monkey kidney cells (Vero cells). All tested compounds 

showed no toxicity against the tested cell lines at >256 μM. 
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Figure 17. In vitro cytotoxicity evaluation of the most potent compounds against 3 

different cell lines; human colon colorectal adenocarcinoma (Caco-2), human ileocecal 

adenocarcinoma (HRT-18) and African green monkey kidney cells (Vero). 

4.6. Selectivity of representative compounds against C. difficile over gut flora 

Since the killing of beneficial gut microflora leads to a significant growth of 

opportunistic pathogens such as C. difficile and subsequent colonization and recurrence 

of CDI, it is important to determine whether representative set of compounds (6a, 8f, 

8g, 8k, 9a, 9c, 9d and 11c) are selective toward C. difficile while sparing normal gut 

microflora. These compounds did not show any activity against human normal gut 

bacteria at >425 µM, including Lactobacillus, Bifidobacterium, E. coli, and 

Enterobacter cloacae (Table 9). On the contrary MICs of positive controls 

(vancomycin, fidaxomicin and metronidazole) ranged from 1 – 1496 µM.  
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Table 9. Activity of Selected Compounds against Human Normal Floraa 

 

MIC (µM) 

6a 8f 8g 8k 9a 9c 9d 11c 

V
an

co
m

yc
in

 

M
et

ro
ni

da
zo

le
 

Fi
da

xo
m

ic
in

 

G
en

ta
m

ic
in

 

Lactobacillus gasseri 

HM-400 
1212 

>80

7 

>80

7 

>76

7 

>42

5 

>77

7 

>73

9 

>91

3 
<1 >1496 <2 NT 

Lactobacillus casei 

ATCC 334 
>1212 

>80

7 

>80

7 

>76

7 

>42

5 

>77

7 

>73

9 

>91

3 

>17

7 
47 

>24

2 
NT 

Lactobacillus crispatus 

HM-103 
>1212 

>80

7 

>80

7 

>76

7 

>42

5 

>77

7 

>73

9 

>91

3 
<1 >1496 30 NT 

Bifidobacterium bifidum 

ATCC 11863 
>1212 

>80

7 

>80

7 

>76

7 

>42

5 

>77

7 

>73

9 

>91

3 

>17

7 
>1496 

>24

2 
NT 

Escherichia coli 

ATCC 25922 
>1212 

>80

7 

>80

7 

>76

7 

>85

0 

>77

7 

>73

9 

>91

3 
NT NT NT 8 

Enterobacter cloacae 

ATCC BAA-1143 
>1212 

>80

7 

>80

7 

>76

7 

>85

0 

>77

7 

>73

9 

>91

3 
NT NT NT <1 

NT = Not tested 

4.7. Aqueous solubility and SGF/SIF stability of representative compounds 

Aqueous solubility plays an important role in determining the suitability of 

thienopyrimidinone derivatives for targeting the site of action i.e., intestine and also to 

facilitate preclinical to clinical transition, therefore we determined the solubility of 

representative potent compounds in PBS buffer (pH 7.3 to 7.5). Compound 6a 

showed >500 µg/mL solubility in PBS buffer whereas compounds 8f, 9c, 9d, and 11c 

exhibited lower solubility ranging from 10 to 20 µg/mL. Stability of these compounds 

in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was also evaluated 

at two time points (Table 10). We observed that SGF stability followed the order of 

9d>6a>8f>9c>11c, whereas SIF stability was in the order of 9d>6a>11c>8f>9c.  

Table 10. Aqueous Solubility in PBS Buffer (pH 7.3 – 7.5) and Stability in SGF 

(Simulated Gastric Fluid) / SIF (Simulated Intestinal Fluid) of Representative 

Thienopyrimidinone Analogues 
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Compound 

Aqueous 

solubilitya 

(µg/mL) 

Percentage 

remaining 

in SGF 4 h 

Percentage 

remaining 

in SGF 8 h 

Percentage 

remaining 

in SIF 4 h 

Percentage 

remaining 

in SIF 8 h 

6a >500 90% 90% 91% 76% 

8f 14.79 50% 48% 60% 51% 

9c 10.76 45% <10% <10% <10% 

9d 12.73 >95% >95% >95% 90% 

11c 18.69 <10% <10% 79% 80% 
a Aqueous solubility was determined in PBS buffer at pH 7.3 – 7.5. 

metronidazole: 10 mg/mL in water;75 
vancomycin hydrochloride: 17.6 mg/mL in water;76 
fidaxomicin: 18 µg/mL at pH 7. 

4.8. In Silico PAINS Analysis.  

All the synthesized target compounds were subjected to PAINS filters by using a 

KNIME (v3.74, KNIME GmbH, Konstanz, Germany) workflow.70 Molecular formula 

strings of target compounds were manually input into the workflow, and the output file 

for the run indicated no PAINS were found.  
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Conclusions 
The SAR data gathered during hit identification and hit-to-lead exploratory medicinal 

chemistry revealed key pharmacophore features of thienopyrimidinone series that 

contributed to the potency against clinical strains of C. difficile. These observations 

included: a) the nitrophenyl portion of the screening hit 2 can be replaced with isosteric 

nitrothienyl and nitrofuranyl to enhance potency in ligand-efficient fashion (e.g., 2 vs 

6a-6c), b) the C2-methyl substitution does not significantly influence potency (e.g., 6a 

vs 6d-6f), c) the presence of an electron-withdrawing regiospecific nitro group on a 

bicyclic scaffold is indispensable to the potency of these compounds (e.g., 1 vs 2, 7a vs 

6a, 7b vs 6b, and 7c vs 6c), d) the C2-methyl can be extended to an aryl/heteroaryl 

ethenyl moiety without significant loss of potency (e.g., 6a vs 8a-8c, 8f-8i and 8k-8m), 

e) the 3-NH of thienopyrimidinone scaffold can be substituted with various arylalkyl 

moieties, aliphatic esters or aliphatic amides (e.g., 6a vs 9a, 9d-9h, 10a, 10b and 10d-

10f) with retention of potency, f) the C4 carbonyl oxygen can be replaced with chloro 

and aromatic/aliphatic amines with retention of activity (e.g., 6a vs 11a-11c), g) either 

C2-, N3- or C2-, C4-disubstitutions on pyrimidine ring of 6a proved detrimental (e.g., 

6a vs 12a-12c), and h) compounds (e.g., 8d, 8e, and 11c) with the carboxylic acid 

substituent showed detrimental activities. The most promising compound (8f) from this 

series exhibited excellent profile: i) potent and rapid killing against C. difficile strains, 

ii) excellent selectivity over human normal flora, iii) low cytotoxicity against 

mammalian cells, iv) increased GI stability, and v) desirable aqueous solubility. Unlike 

synthetically intractable and architecturally complex macrocyclic antibiotics, 

vancomycin (MW = 1449 Da) and fidaxomicin (MW = 1058 Da) that are difficult to 

structurally optimize, the current series of small MW thienopyrimidinones offer 
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significant scope for further medicinal chemistry optimization to explore SAR, and 

improve in vitro activity without increasing the molecular size and complexity beyond 

600 Da. 
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